Wave-Breaking and Peakons for a Modified Camassa-Holm Equation

被引:192
|
作者
Gui, Guilong [1 ,2 ]
Liu, Yue [3 ]
Olver, Peter J. [4 ]
Qu, Changzheng [5 ]
机构
[1] Jiangsu Univ, Dept Math, Zhenjiang 212013, Peoples R China
[2] Chinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R China
[3] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
[4] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[5] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
SHALLOW-WATER EQUATION; KORTEWEG-DE-VRIES; GEODESIC-FLOW; SCATTERING; HIERARCHY; EXISTENCE; SOLITONS; PULSES;
D O I
10.1007/s00220-012-1566-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we investigate the formation of singularities and the existence of peaked traveling-wave solutions for a modified Camassa-Holm equation with cubic nonlinearity. The equation is known to be integrable, and is shown to admit a single peaked soliton and multi-peakon solutions, of a different character than those of the Camassa-Holm equation. Singularities of the solutions can occur only in the form of wave-breaking, and a new wave-breaking mechanism for solutions with certain initial profiles is described in detail.
引用
收藏
页码:731 / 759
页数:29
相关论文
共 50 条
  • [41] Stability of peakons and periodic peakons for a nonlinear quartic Camassa-Holm equation
    Chen, Aiyong
    Deng, Tongjie
    Qiao, Zhijun
    [J]. MONATSHEFTE FUR MATHEMATIK, 2022, 198 (02): : 251 - 288
  • [42] ON A THREE-COMPONENT CAMASSA-HOLM EQUATION WITH PEAKONS
    Mi, Yongsheng
    Mu, Chunlai
    [J]. KINETIC AND RELATED MODELS, 2014, 7 (02) : 305 - 339
  • [43] The Modified Camassa-Holm Equation
    Gorka, Przemyslaw
    Reyes, Enrique G.
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (12) : 2617 - 2649
  • [44] Orbital stability of the sum of N peakons for the generalized modified Camassa-Holm equation
    Deng, Tongjie
    Chen, Aiyong
    [J]. MONATSHEFTE FUR MATHEMATIK, 2023, 202 (02): : 229 - 262
  • [45] Wave breaking and propagation speed for the Camassa-Holm equation with κ ≠ 0
    Zhou, Yong
    Chen, Huiping
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (03) : 1875 - 1882
  • [46] Orbital stability of floating periodic peakons for the Camassa-Holm equation
    Yin, Jiuli
    Tian, Lixin
    Fan, Xinghua
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) : 4021 - 4026
  • [48] Orbital stability of periodic peakons for a generalized Camassa-Holm equation
    Zhang, Ying
    [J]. APPLICABLE ANALYSIS, 2022, 101 (17) : 6136 - 6150
  • [49] Peakons and periodic cusp waves in a generalized Camassa-Holm equation
    Qian, TF
    Tang, MY
    [J]. CHAOS SOLITONS & FRACTALS, 2001, 12 (07) : 1347 - 1360
  • [50] Orbital stability of periodic peakons for the higher-order modified Camassa-Holm equation
    Chong, Gezi
    Fu, Ying
    Wang, Hao
    [J]. MONATSHEFTE FUR MATHEMATIK, 2024, 204 (04): : 707 - 743