Wave-Breaking and Peakons for a Modified Camassa-Holm Equation

被引:192
|
作者
Gui, Guilong [1 ,2 ]
Liu, Yue [3 ]
Olver, Peter J. [4 ]
Qu, Changzheng [5 ]
机构
[1] Jiangsu Univ, Dept Math, Zhenjiang 212013, Peoples R China
[2] Chinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R China
[3] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
[4] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[5] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
SHALLOW-WATER EQUATION; KORTEWEG-DE-VRIES; GEODESIC-FLOW; SCATTERING; HIERARCHY; EXISTENCE; SOLITONS; PULSES;
D O I
10.1007/s00220-012-1566-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we investigate the formation of singularities and the existence of peaked traveling-wave solutions for a modified Camassa-Holm equation with cubic nonlinearity. The equation is known to be integrable, and is shown to admit a single peaked soliton and multi-peakon solutions, of a different character than those of the Camassa-Holm equation. Singularities of the solutions can occur only in the form of wave-breaking, and a new wave-breaking mechanism for solutions with certain initial profiles is described in detail.
引用
收藏
页码:731 / 759
页数:29
相关论文
共 50 条
  • [1] Wave-Breaking and Peakons for a Modified Camassa–Holm Equation
    Guilong Gui
    Yue Liu
    Peter J. Olver
    Changzheng Qu
    [J]. Communications in Mathematical Physics, 2013, 319 : 731 - 759
  • [2] Well-posedness, wave breaking and peakons for a modified μ-Camassa-Holm equation
    Qu, Changzheng
    Fu, Ying
    Liu, Yue
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (02) : 433 - 477
  • [3] Stability of peakons of the Camassa-Holm equation beyond wave breaking
    Gao, Yu
    Liu, Hao
    Wong, Tak Kwong
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (12)
  • [4] Peakons of the Camassa-Holm equation
    Liu, ZR
    Qian, TF
    [J]. APPLIED MATHEMATICAL MODELLING, 2002, 26 (03) : 473 - 480
  • [5] Orbital Stability of Peakons for the Modified Camassa-Holm Equation
    Li, Ji
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (01) : 148 - 160
  • [6] On conservative sticky peakons to the modified Camassa-Holm equation
    Gao, Yu
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 365 : 486 - 520
  • [7] Stability of periodic peakons for the modified μ-Camassa-Holm equation
    Liu, Yue
    Qu, Changzheng
    Zhang, Ying
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2013, 250 : 66 - 74
  • [8] Stability of peakons for the generalized modified Camassa-Holm equation
    Guo, Zihua
    Liu, Xiaochuan
    Liu, Xingxing
    Qu, Changzheng
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (12) : 7749 - 7779
  • [9] Wave Breaking of the Camassa-Holm Equation
    Jiang, Zaihong
    Ni, Lidiao
    Zhou, Yong
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2012, 22 (02) : 235 - 245
  • [10] Wave-breaking phenomena and persistence properties for a nonlinear dissipative Camassa-Holm equation
    Fu, Shanshan
    Wang, Ying
    [J]. APPLICABLE ANALYSIS, 2023, 102 (17) : 4805 - 4827