Domain wall motion in ferromagnets modelled by a quintic complex Ginzburg-Landau equation

被引:1
|
作者
Nguenang, J. -P. [1 ,2 ]
Njassap, T. Njassap [1 ]
Kofane, T. C. [3 ]
机构
[1] Univ Douala, Fac Sci, Dept Phys, Fundamental Phys Lab Grp Nonlinear Sci & Complex, Douala, Cameroon
[2] Abdus Salam Int Ctr Theoret Phys, Condensed Matter & Stat Phys Sect, I-34014 Trieste, Italy
[3] Univ Yaounde I, Fac Sci, Lab Mecan, Yaounde, Cameroon
来源
EUROPEAN PHYSICAL JOURNAL B | 2008年 / 65卷 / 04期
关键词
D O I
10.1140/epjb/e2008-00362-y
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A quintic complex Ginzburg-Landau equation is derived from a Landau-Lifshitz-Gilbert equation and is used to describe the magnetization dynamics in a one-dimensional uni-axial ferromagnet. Trough the use of suitable approximations, we derive the magnetic solitary wave excitations solutions which have pulse-like shapes. Subsequent numerical simulations reveal domain wall propagation.
引用
收藏
页码:539 / 545
页数:7
相关论文
共 50 条
  • [41] Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation
    Kalashnikov, V. L.
    PHYSICAL REVIEW E, 2009, 80 (04):
  • [42] Exploding soliton and front solutions of the complex cubic-quintic Ginzburg-Landau equation
    Soto-Crespo, JM
    Akhmediev, N
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2005, 69 (5-6) : 526 - 536
  • [43] Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation
    Akhmediev, N.N.
    Afanasjev, V.V.
    Soto-Crespo, J.M.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1996, 53 (1-B pt B):
  • [44] Wave dynamics in a modified quintic complex Ginzburg-Landau system
    Pelap, Francois B.
    Kamga, Jules H.
    Fomethe, Anaclet
    Kenfack, Aurelien J.
    Faye, Mansour M.
    PHYSICS LETTERS A, 2009, 373 (11) : 1015 - 1018
  • [45] Solitary wave solutions for quintic complex Ginzburg-Landau model
    Rizvi, S. T. R.
    Ali, K.
    Salman, M.
    Nawaz, B.
    Younis, M.
    OPTIK, 2017, 149 : 59 - 62
  • [46] ASYMPTOTIC COMPACTNESS OF STOCHASTIC COMPLEX GINZBURG-LANDAU EQUATION ON AN UNBOUNDED DOMAIN
    Bloemker, Dirk
    Han, Yongqian
    STOCHASTICS AND DYNAMICS, 2010, 10 (04) : 613 - 636
  • [47] Quintic complex Ginzburg-Landau model for ring fiber lasers
    Komarov, A
    Leblond, H
    Sanchez, F
    PHYSICAL REVIEW E, 2005, 72 (02):
  • [48] DYNAMICS OF DEFECTS IN THE COMPLEX GINZBURG-LANDAU EQUATION
    RICA, S
    TIRAPEGUI, E
    PHYSICA D, 1992, 61 (1-4): : 246 - 252
  • [49] TRAVELING WAVES IN THE COMPLEX GINZBURG-LANDAU EQUATION
    DOELMAN, A
    JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (02) : 225 - 266
  • [50] HOMOCLINIC EXPLOSIONS IN THE COMPLEX GINZBURG-LANDAU EQUATION
    LUCE, BP
    PHYSICA D, 1995, 84 (3-4): : 553 - 581