Domain wall motion in ferromagnets modelled by a quintic complex Ginzburg-Landau equation

被引:1
|
作者
Nguenang, J. -P. [1 ,2 ]
Njassap, T. Njassap [1 ]
Kofane, T. C. [3 ]
机构
[1] Univ Douala, Fac Sci, Dept Phys, Fundamental Phys Lab Grp Nonlinear Sci & Complex, Douala, Cameroon
[2] Abdus Salam Int Ctr Theoret Phys, Condensed Matter & Stat Phys Sect, I-34014 Trieste, Italy
[3] Univ Yaounde I, Fac Sci, Lab Mecan, Yaounde, Cameroon
来源
EUROPEAN PHYSICAL JOURNAL B | 2008年 / 65卷 / 04期
关键词
D O I
10.1140/epjb/e2008-00362-y
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A quintic complex Ginzburg-Landau equation is derived from a Landau-Lifshitz-Gilbert equation and is used to describe the magnetization dynamics in a one-dimensional uni-axial ferromagnet. Trough the use of suitable approximations, we derive the magnetic solitary wave excitations solutions which have pulse-like shapes. Subsequent numerical simulations reveal domain wall propagation.
引用
收藏
页码:539 / 545
页数:7
相关论文
共 50 条
  • [1] Domain wall motion in ferromagnets modelled by a quintic complex Ginzburg-Landau equation
    J.-P. Nguenang
    T. Njassap Njassap
    T. C. Kofané
    The European Physical Journal B, 2008, 65
  • [2] Hole solutions in the cubic complex Ginzburg-Landau equation versus holes in the cubic-quintic complex Ginzburg-Landau equation
    Brand, Helmut R.
    Descalzi, Orazio
    Cisternas, Jaime
    NONEQUILIBRIUM STATISTICAL MECHANICS AND NONLINEAR PHYSICS, 2007, 913 : 133 - +
  • [3] Existence range of pulses in the quintic complex Ginzburg-Landau equation
    Gutierrez, Pablo
    Descalzi, Orazio
    NONEQUILIBRIUM STATISTICAL MECHANICS AND NONLINEAR PHYSICS, 2007, 913 : 127 - +
  • [4] Stability of the pulselike solutions of the quintic complex Ginzburg-Landau equation
    SotoCrespo, JM
    Akhmediev, NN
    Afanasjev, VV
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1996, 13 (07) : 1439 - 1449
  • [5] Motion of pulses and vortices in the cubic-quintic complex Ginzburg-Landau equation without viscosity
    Sakaguchi, H
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 210 (1-2) : 138 - 148
  • [6] Traveling wavetrains in the complex cubic-quintic Ginzburg-Landau equation
    Mancas, SC
    Choudhury, SR
    CHAOS SOLITONS & FRACTALS, 2006, 28 (03) : 834 - 843
  • [7] Analytical approximation of the soliton solutions of the quintic complex Ginzburg-Landau equation
    Soto-Crespo, JM
    Pesquera, L
    PHYSICAL REVIEW E, 1997, 56 (06) : 7288 - 7293
  • [8] Three forms of localized solutions of the quintic complex Ginzburg-Landau equation
    Afanasjev, VV
    Akhmediev, N
    SotoCrespo, JM
    PHYSICAL REVIEW E, 1996, 53 (02): : 1931 - 1939
  • [9] Spiral motion in a noisy complex Ginzburg-Landau equation
    Aranson, IS
    Chate, H
    Tang, LH
    PHYSICAL REVIEW LETTERS, 1998, 80 (12) : 2646 - 2649
  • [10] Motion of spiral waves in the complex Ginzburg-Landau equation
    Aguareles, M.
    Chapman, S. J.
    Witelski, T.
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (07) : 348 - 365