SPATIO-TEMPORAL INTERPOLATION OF PRECIPITATION INCLUDING COVARIATES: DURING MONSOON PERIODS IN PAKISTAN

被引:0
|
作者
Hussain, Ijaz [1 ,2 ]
Spoeck, Gunter [2 ]
Pilz, Juergen [2 ]
Faisal, Muhammad [3 ]
Yu, Hwa-Lung [4 ]
机构
[1] COMSATS Inst Informat Technol, Dept Math, Lahore, Pakistan
[2] Univ Klagenfurt, Dept Stat, A-9020 Klagenfurt, Austria
[3] Univ Vienna, ISOR, A-1010 Vienna, Austria
[4] Natl Taiwan Univ, Dept Bio Environm Syst Engn, Taipei, Taiwan
来源
PAKISTAN JOURNAL OF STATISTICS | 2012年 / 28卷 / 03期
关键词
Bayesian interpolation; Covariates; nested spatio-temporal covariance; non-stationary spatial covariance; spatial artificial neural network;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The space-time interpolation of precipitation has significant contribution to river control, reservoir operations, forestry interest and flash flood watches etc. The changes in environmental covariates and spatial covariates make space-time estimation of precipitation a challenging task. In the present paper, we use a generalized additive model with Gaussian link function to account for the effect of covariates; the resulting output is partitioned into two parts; trend component and residual component. The trend component is modeled on the basis of spatial artificial neural network (SANN) architecture. The residual component is assumed to be a spatio-temporal random field and is modeled using Le and Zidek (2006) hierarchical Bayesian interpolation (HBI) method. The separable stationary space-time nested covariance model and purely spatial non-stationary non-parametric covariance model for interpolation of the residual component are used. For the interpolation of the amount of precipitation at ungauged locations the interpolated residual components for ungauged locations are added to the respective interpolated trend components. The results of two covariance functions are compared by means of cross-validations and suggest that HBI including covariates provides minimum mean square prediction error if the nested spatio-temporal stationary covariance model is used.
引用
收藏
页码:351 / 365
页数:15
相关论文
共 50 条
  • [21] An autoregressive spatio-temporal precipitation model
    Sigrist, Fabio
    Kuensch, Hans R.
    Stahel, Werner A.
    1ST CONFERENCE ON SPATIAL STATISTICS 2011 - MAPPING GLOBAL CHANGE, 2011, 3 : 2 - 7
  • [22] Spatio-temporal DeepKriging for interpolation and probabilistic forecasting
    Nag, Pratik
    Sun, Ying
    Reich, Brian J.
    SPATIAL STATISTICS, 2023, 57
  • [23] Spatio-Temporal Assessment of Global Precipitation Products over the Largest Agriculture Region in Pakistan
    Nawaz, Zain
    Li, Xin
    Chen, Yingying
    Nawaz, Naima
    Gull, Rabia
    Elnashar, Abdelrazek
    REMOTE SENSING, 2020, 12 (21) : 1 - 24
  • [24] Estimation of missing precipitation records integrating surface interpolation techniques and spatio-temporal association rules
    Teegavarapu, Ramesh S. V.
    JOURNAL OF HYDROINFORMATICS, 2009, 11 (02) : 133 - 146
  • [25] Spatio-temporal precipitation modelling in rural watersheds
    Dalezios, Nicolas R.
    Adamowski, Kazimierz
    Hydrological Sciences Journal, 1995, 40 (05):
  • [26] Spatio-temporal variability of extreme precipitation in Nepal
    Talchabhadel, Rocky
    Karki, Ramchandra
    Thapa, Bhesh Raj
    Maharjan, Manisha
    Parajuli, Binod
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2018, 38 (11) : 4296 - 4313
  • [27] Spatio-temporal Outlier Detection in Precipitation Data
    Wu, Elizabeth
    Liu, Wei
    Chawla, Sanjay
    KNOWLEDGE DISCOVERY FROM SENSOR DATA, 2010, 5840 : 115 - 133
  • [28] Spatio-temporal Interpolation Methods for Solar Events Metadata
    Roubrahimi, Soukaina Filali
    Aydin, Berkay
    Kempton, Dustin
    Angryk, Rafal
    2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 3149 - 3157
  • [29] A spatio-temporal fuzzy interpolation algorithm for video deinterlacing
    Jeon, Gwanggil
    Jeong, Jechang
    Lee, Joohyun
    You, Jongmin
    Wu, Chengke
    2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, : 1789 - +
  • [30] Approaches to stereoscopic video based on spatio-temporal interpolation
    Garcia, BJ
    STEREOSCOPIC DISPLAYS AND VIRTUAL REALITY SYSTEMS III, 1996, 2653 : 85 - 95