A high resolution gamma-ray spectrometer based on superconducting microcalorimeters

被引:80
|
作者
Bennett, D. A. [1 ,2 ]
Horansky, R. D. [1 ,2 ]
Schmidt, D. R. [1 ,3 ]
Hoover, A. S. [4 ]
Winkler, R. [4 ]
Alpert, B. K. [1 ]
Beall, J. A. [1 ]
Doriese, W. B. [1 ,3 ]
Fowler, J. W. [1 ,3 ]
Fitzgerald, C. P. [1 ]
Hilton, G. C. [1 ]
Irwin, K. D. [1 ]
Kotsubo, V. [1 ,3 ]
Mates, J. A. B. [1 ,3 ]
O'Neil, G. C. [1 ]
Rabin, M. W. [4 ]
Reintsema, C. D. [1 ]
Schima, F. J. [1 ]
Swetz, D. S. [1 ]
Vale, L. R. [1 ]
Ullom, J. N. [1 ]
机构
[1] NIST, Boulder, CO 80305 USA
[2] Univ Denver, Denver, CO 80208 USA
[3] Univ Colorado, Boulder, CO 80309 USA
[4] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2012年 / 83卷 / 09期
关键词
TRANSITION-EDGE SENSORS; ENERGY-RESOLUTION; X-RAY; DETECTORS; ARRAYS; SPECTROSCOPY; NOISE;
D O I
10.1063/1.4754630
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Improvements in superconductor device fabrication, detector hybridization techniques, and superconducting quantum interference device readout have made square-centimeter-sized arrays of gammaray microcalorimeters, based on transition-edge sensors (TESs), possible. At these collecting areas, gamma microcalorimeters can utilize their unprecedented energy resolution to perform spectroscopy in a number of applications that are limited by closely-spaced spectral peaks, for example, the non-destructive analysis of nuclear materials. We have built a 256 pixel spectrometer with an average full-width-at-half-maximum energy resolution of 53 eV at 97 keV, a useable dynamic range above 400 keV, and a collecting area of 5 cm(2). We have demonstrated multiplexed readout of the full 256 pixel array with 236 of the pixels (91%) giving spectroscopic data. This is the largest multiplexed array of TES microcalorimeters to date. This paper will review the spectrometer, highlighting the instrument design, detector fabrication, readout, operation of the instrument, and data processing. Further, we describe the characterization and performance of the newest 256 pixel array. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4754630]
引用
收藏
页数:14
相关论文
共 50 条
  • [31] RANGER GAMMA-RAY SPECTROMETER
    METZGER, AE
    ANDERSON, EC
    VANDILLA, MA
    ARNOLD, JR
    NUCLEONICS, 1962, 20 (10): : 64 - +
  • [32] THE TRANSIENT GAMMA-RAY SPECTROMETER
    OWENS, A
    BAKER, R
    CLINE, TL
    GEHRELS, N
    JERMAKIAN, J
    NOLAN, T
    RAMATY, R
    SMITH, G
    STILWELL, DE
    TEEGARDEN, BJ
    TROMBKA, J
    YAVER, H
    CORK, CP
    LANDIS, DA
    LUKE, PN
    MADDEN, NW
    MALONE, D
    PEHL, RH
    HURLEY, K
    MATHIAS, S
    POST, AH
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1991, 38 (02) : 559 - 567
  • [33] STABILISATION OF A GAMMA-RAY SPECTROMETER
    DIXON, I
    NUCLEAR INSTRUMENTS & METHODS, 1963, 25 (01): : 26 - 28
  • [34] THE GRAD GAMMA-RAY SPECTROMETER
    RESTER, AC
    PIERCEY, RB
    EICHHORN, G
    COLDWELL, RL
    MCKISSON, J
    ELY, DW
    MANN, HM
    JENKINS, DA
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1986, 33 (01) : 732 - 734
  • [35] THE GAMMA-RAY SCINTILLATION SPECTROMETER
    PEIRSON, DH
    IREDALE, P
    BRITISH JOURNAL OF APPLIED PHYSICS, 1957, 8 (10): : 422 - 422
  • [36] APOLLO GAMMA-RAY SPECTROMETER
    HARRINGT.TM
    MARSHALL, JH
    ARNOLD, JR
    PETERSON, LE
    TROMBKA, JI
    METZGER, AE
    NUCLEAR INSTRUMENTS & METHODS, 1974, 118 (02): : 401 - 411
  • [37] HIGH-FLUX GAMMA-RAY COMPTON SPECTROMETER
    ROLLASON, AJ
    SCHNEIDER, JR
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1987, 178 (1-4): : 189 - 189
  • [38] Gamma-Ray Spectrometer with High Event Processing Rate
    Ivanova, A. A.
    Ivanenko, S. V.
    Kvashnin, A. N.
    Puriga, E. A.
    Rovenskikh, A. F.
    Khilchenko, A. D.
    2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC), 2012, : 1052 - 1055
  • [39] High-resolution gamma-ray spectroscopy
    H. G. Börner
    M. Jentschel
    Physics of Atomic Nuclei, 2001, 64 : 1011 - 1014
  • [40] High-resolution gamma-ray spectroscopy
    Börner, HG
    Jentschel, A
    PHYSICS OF ATOMIC NUCLEI, 2001, 64 (06) : 1011 - 1014