Vibration behavior of metallic sandwich panels with Hourglass truss cores

被引:59
|
作者
Li, Shuang [1 ]
Yang, Jin-Shui [1 ]
Wu, Lin-Zhi [1 ,2 ]
Yu, Guo-Cai [1 ]
Feng, Li-Jia [2 ]
机构
[1] Harbin Engn Univ, Coll Aerosp & Civil Engn, Key Lab Adv Ship Mat & Mech, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Ctr Composite Mat, Harbin 150001, Peoples R China
基金
美国国家科学基金会;
关键词
Metallic; Sandwich structures; Vibration; Hourglass truss cores; Finite element analysis (FEA); KAGOME LATTICE CORES; MECHANICAL-BEHAVIOR; STRUCTURAL PERFORMANCE; ENERGY-ABSORPTION; BEAMS; OPTIMIZATION; DESIGN;
D O I
10.1016/j.marstruc.2018.09.004
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Exploring lightweight sandwich structures with excellent load-bearing and vibration damping performances is one of the important topics in structural and functional applications. The aim of the present work is to design, fabricate novel metallic sandwich structures with Hourglass truss cores and investigate their modal characteristics and vibration isolation performances by comparing with the traditional pyramidal sandwich structure experimentally and numerically. It is shown that the natural frequencies of the Hourglass sandwich structures are much higher than that of the pyramidal sandwich structures under free-free boundary condition and equal relative density of the truss cores. The torsional modes and transverse bending modes of the Hourglass sandwich structures separately play a dominant role in lower and higher modes of vibration, which are opposite to the pyramidal sandwich structures. From the results of the acceleration frequency responses and vibration level difference (VLD), it is indicated that the Hourglass sandwich structures exhibit better vibration isolation performance than the pyramidal sandwich structures. Furthermore, experimentally validated finite element analysis (FEA) models are developed to study the influences of truss inclination angles and boundary conditions on the modal characteristics of the present sandwich structures. Some conclusions are summarized, which may be useful for understanding the vibration behavior of such kinds of lattice sandwich structures.
引用
收藏
页码:84 / 98
页数:15
相关论文
共 50 条
  • [21] An improved predictive model for local deformational behavior of sandwich panels with gradient metallic foam cores
    Mu, Lin
    Lian, Qiuqi
    Yang, Xiaofeng
    Kou, Jialiang
    Gao, Duixian
    ARCHIVE OF APPLIED MECHANICS, 2023, 93 (04) : 1373 - 1386
  • [22] An improved predictive model for local deformational behavior of sandwich panels with gradient metallic foam cores
    Lin Mu
    Qiuqi Lian
    Xiaofeng Yang
    Jialiang Kou
    Duixian Gao
    Archive of Applied Mechanics, 2023, 93 : 1373 - 1386
  • [23] Optimal control of sandwich panels with pyramidal truss cores based on energy criterion
    Liu, H.
    Yang, J. L.
    ADVANCES IN FRACTURE AND MATERIALS BEHAVIOR, PTS 1 AND 2, 2008, 33-37 : 1419 - 1424
  • [24] Mechanical response of carbon fiber composite sandwich panels with pyramidal truss cores
    George, Tochukwu
    Deshpande, Vikram S.
    Wadley, Haydn N. G.
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2013, 47 : 31 - 40
  • [25] Vibration band gap behaviors of sandwich panels with corrugated cores
    Wu, Zhi-Jing
    Li, Feng-Ming
    Wang, Yi-Ze
    COMPUTERS & STRUCTURES, 2013, 129 : 30 - 39
  • [26] Effect of temperature on the compressive behavior of carbon fiber composite pyramidal truss cores sandwich panels with reinforced frames
    Li, Xiaodong
    Wu, Linzhi
    Ma, Li
    Yan, Xiangqiao
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2016, 6 (02) : 76 - 80
  • [27] Effect of temperature on the compressive behavior of carbon fiber composite pyramidal truss cores sandwich panels with reinforced frames
    Xiaodong Li
    Linzhi Wu
    Li Ma
    Xiangqiao Yan
    Theoretical & Applied Mechanics Letters, 2016, 6 (02) : 76 - 80
  • [28] Free vibration analysis of composite sandwich plates with different truss cores
    Chen, J. E.
    Zhang, W.
    Sun, M.
    Yao, M. H.
    Liu, J.
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2018, 25 (09) : 701 - 713
  • [29] Damage detection based on vibration for composite sandwich panels with truss core
    Zhou, Jie
    Li, Zheng
    COMPOSITE STRUCTURES, 2019, 229
  • [30] Vibration of a Satellite Structure with Composite Lattice Truss Core Sandwich Panels
    Qi, Ge
    Ma, Li
    Bortolotti Rossini, Mayara
    Schroeder, Kai-Uwe
    AIAA JOURNAL, 2022, 60 (06) : 3389 - 3401