Reconstructing permutations from cycle minors

被引:0
|
作者
Monks, Maria [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2009年 / 16卷 / 01期
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The ith cycle minor of a permutation p of the set {1, 2,..., n} is the permutation formed by deleting an entry i from the decomposition of p into disjoint cycles and reducing each remaining entry larger than i by 1. In this paper, we show that any permutation of {1, 2,..., n} can be reconstructed from its set of cycle minors if and only if n >= 6. We then use this to provide an alternate proof of a known result on a related reconstruction problem.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Reconstructing Hidden Permutations Using the Average-Precision (AP) Correlation Statistic
    De Stefani, Lorenzo
    Epasto, Alessandro
    Upfal, Eli
    Vandin, Fabio
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 1526 - 1532
  • [42] Reconstructing the iron cycle from the horizontal distribution of metals in the sediment of Baldeggersee
    Schaller, T
    Moor, HC
    Wehrli, B
    AQUATIC SCIENCES, 1997, 59 (04) : 326 - 344
  • [43] Reconstructing the iron cycle from the horizontal distribution of metals in the sediment of Baldeggersee
    Schaller T.
    Moor H.C.
    Wehrli B.
    Aquatic Sciences, 1997, 59 (4) : 326 - 344
  • [44] A Remark on Continued Fractions for Permutations and D-Permutations with a Weight-1 per Cycle
    Deb, Bishal
    Sokal, Alan D.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (02):
  • [45] COUNTING PERMUTATIONS WITH GIVEN CYCLE STRUCTURE AND DESCENT SET
    GESSEL, IM
    REUTENAUER, C
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1993, 64 (02) : 189 - 215
  • [46] What do permutations of a given cycle pattern generate?
    Hajja, Mowaffaq
    MATHEMATICAL GAZETTE, 2011, 95 (533): : 341 - 342
  • [47] Random permutations with cycle lengths in a given finite set
    Timashov, A. N.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2008, 18 (01): : 25 - 39
  • [48] Permutations on finite fields with invariant cycle structure on lines
    Daniel Gerike
    Gohar M. Kyureghyan
    Designs, Codes and Cryptography, 2020, 88 : 1723 - 1740
  • [49] Single-cycle bit permutations with MOMR execution
    Lee, RB
    Yang, X
    Shi, ZJJ
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2005, 20 (05) : 577 - 585
  • [50] Nonlinearity of k-cycle permutations on Z(n)
    Kumar, Yogesh
    Mishra, P. R.
    Sharma, R. K.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2018, 11 (02)