Anodic Aluminum Oxide Passivation For Silicon Solar Cells

被引:24
|
作者
Lu, P. H. [1 ]
Wang, K. [1 ]
Lu, Z. [1 ]
Lennon, A. J. [1 ]
Wenham, S. R. [1 ]
机构
[1] Univ New S Wales, Sch Photovolta & Renewable Energy Engn, Sydney, NSW 2052, Australia
来源
IEEE JOURNAL OF PHOTOVOLTAICS | 2013年 / 3卷 / 01期
基金
澳大利亚研究理事会;
关键词
Anodic aluminum oxide (AAO); local metal contacts; nanoscale; passivation; silicon solar cell; stored charge; SURFACE RECOMBINATION; HYDROGEN EMBRITTLEMENT; NITRIDE; LAYER; EFFICIENCY; FILMS;
D O I
10.1109/JPHOTOV.2012.2214377
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The requirement to form localized rear metal contact regions for higher silicon solar cell efficiencies places demand on patterning techniques in terms of the small size of the openings and the ability to perform the patterning at commercial wafer processing rates. We suggest here the possibility of using a self-patterning approach which offers the potential of enhanced surface passivation and nanoscale patterning achieved using a single electrochemical anodization process. It is shown that when nanoporous anodic aluminum oxide (AAO) layers are formed by anodizing an aluminum layer over an intervening SiO2 or SiNx dielectric layer, the implied open-circuit voltages of p-type silicon test structures can be increased by an average of 40 and 47 mV, respectively. Capacitance-voltage measurements show that these passivating AAO dielectric stack layers store positive charges, which differs from what is observed for Al2O3 layers deposited by plasma-enhanced chemical vapor deposition or atomic layer deposition. Furthermore, we show that the magnitude of the stored charge in the dielectric stacks depends on the anodization conditions, highlighting the possibility of controlling the charge storage properties of these layers for specific cell requirements. Although the passivating properties of the anodized aluminum layer appear to be strongly influenced by charge effects, it is also possible that hydrogenation effects may play a role as has been previously observed for other electrochemical processes, such as metal plating.
引用
收藏
页码:143 / 151
页数:9
相关论文
共 50 条
  • [31] Tantalum oxide/silicon nitride: A negatively charged surface passivation stack for silicon solar cells
    Wan, Yimao
    Bullock, James
    Cuevas, Andres
    APPLIED PHYSICS LETTERS, 2015, 106 (20)
  • [32] Amorphous silicon oxide passivation films for silicon heterojunction solar cells studied by hydrogen evolution
    Nakada, Kazuyoshi
    Miyajima, Shinsuke
    Konagai, Makoto
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2014, 53 (04)
  • [33] Aluminum Nanoparticles Passivation of Multi-Crystalline Silicon Nanostructure for Solar Cells Applications
    A. B. Jemai
    A. Mannai
    L. Khezami
    S. Mokraoui
    Faisal K. Algethami
    A. Al-Ghyamah
    M. Ben Rabha
    Silicon, 2020, 12 : 2755 - 2760
  • [34] Aluminum Nanoparticles Passivation of Multi-Crystalline Silicon Nanostructure for Solar Cells Applications
    Jemai, A. B.
    Mannai, A.
    Khezami, L.
    Mokraoui, S.
    Algethami, Faisal K.
    Al-Ghyamah, A.
    Ben Rabha, M.
    SILICON, 2020, 12 (11) : 2755 - 2760
  • [35] An intrinsic amorphous silicon oxide and amorphous silicon stack passivation layer for crystalline silicon heterojunction solar cells
    Krajangsang, Taweewat
    Inthisang, Sorapong
    Sritharathikhun, Jaran
    Hongsingthong, Aswin
    Limmanee, Amornrat
    Kittisontirak, Songkiate
    Chinnavornrungsee, Perawut
    Phatthanakun, Rungrueang
    Sriprapha, Kobsak
    THIN SOLID FILMS, 2017, 628 : 107 - 111
  • [36] Efficient passivation of solar cells by silicon nitride
    El Amrani, A.
    Bekhtari, A.
    El Kechai, A.
    Menari, H.
    Mahiou, L.
    Maoudj, M.
    VACUUM, 2015, 120 : 95 - 99
  • [37] Defect passivation in multicrystalline silicon for solar cells
    Tarasov, I
    Ostapenko, S
    Nakayashiki, K
    Rohatgi, A
    APPLIED PHYSICS LETTERS, 2004, 85 (19) : 4346 - 4348
  • [38] Advances in the Surface Passivation of Silicon Solar Cells
    Schmidt, J.
    Werner, F.
    Veith, B.
    Zielke, D.
    Steingrube, S.
    Altermatt, P. P.
    Gatz, S.
    Dullweber, T.
    Brendel, R.
    INTERNATIONAL CONFERENCE ON MATERIALS FOR ADVANCED TECHNOLOGIES 2011, SYMPOSIUM O, 2012, 15 : 30 - 39
  • [39] Hydrogen passivation of multicrystalline silicon solar cells
    Lüdemann, R
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1999, 58 (1-2): : 86 - 90
  • [40] Extrinsic passivation of silicon surfaces for solar cells
    Bonilla, Ruy S.
    Reichel, Christian
    Hermle, Martin
    Martins, George
    Wilshaw, Peter R.
    5TH INTERNATIONAL CONFERENCE ON SILICON PHOTOVOLTAICS, SILICONPV 2015, 2015, 77 : 774 - 778