Prior Knowledge in Learning Finite Parameter Spaces

被引:0
|
作者
Glowacka, Dorota [1 ]
Dorard, Louis [1 ]
Medlar, Alan [1 ]
Shawe-Taylor, John [1 ]
机构
[1] UCL, Dept Comp Sci, London WC1E 6BT, England
来源
FORMAL GRAMMAR | 2011年 / 5591卷
关键词
MODEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new framework for computational analysis of language acquisition in a finite parameter space, for instance, in the "principles and parameters" approach to language. The prior knowledge multi-armed bandit algorithm abstracts the idea of a casino of slot machines in which a player has to play machines in order to find out how good they are, but where he has some prior knowledge that some machines are likely to have similar rates of reward. Each grammar is represented as an arm of a bandit machine with the mean-reward function drawn from a Gaussian Process specified by a covariance function between grammars. We test our algorithm on a ten-parameter space and show that the number of iterations required to identify the target grammar is much smaller than the number of all the possible grammars that the learner would have to explore if he was searching exhaustively the entire parameter space.
引用
收藏
页码:199 / 213
页数:15
相关论文
共 50 条
  • [41] An efficient algorithm for constructing Γ-minimax test for finite parameter spaces
    Fandom Noubiap, Roger
    Seidel, Wilfried
    Computational Statistics and Data Analysis, 2001, 36 (02): : 145 - 161
  • [42] An efficient algorithm for constructing Γ-minimax tests for finite parameter spaces
    Noubiap, RF
    Seidel, W
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2001, 36 (02) : 145 - 161
  • [43] THE INFLUENCE OF PRIOR KNOWLEDGE ON KNOWLEDGE GAIN IN A BLENDED-LEARNING-SEMINAR
    Fassbeck, G.
    Prohl, R.
    EDULEARN12: 4TH INTERNATIONAL CONFERENCE ON EDUCATION AND NEW LEARNING TECHNOLOGIES, 2012, : 7527 - 7534
  • [44] Common Knowledge: Learning Spaces in Academic Libraries
    Sullivan, Rebecca M.
    COLLEGE & UNDERGRADUATE LIBRARIES, 2010, 17 (2-3) : 130 - 148
  • [45] Estimating kinetic mechanisms with prior knowledge I: Linear parameter constraints
    Salari, Autoosa
    Navarro, Marco A.
    Milescu, Mirela
    Milescu, Lorin S.
    JOURNAL OF GENERAL PHYSIOLOGY, 2018, 150 (02): : 323 - 338
  • [46] Visualizing Parameter Spaces of Deep-Learning Machines
    Hancock, Monte
    Hadgis, Antoinette
    Bowles, Benjamin
    Brown, Payton
    Ahmed, Alexis Wahlid
    Higgins, Tyler
    Bernobic, Nikki
    AUGMENTED COGNITION, AC 2019, 2019, 11580 : 192 - 210
  • [47] Leveraging prior knowledge for process parameter classification in mAb Protein A chromatography
    Tao, Yinying
    Rauk, Adam
    Gao, Jinxin
    De Felippis, Michael R
    Journal of Chromatography A, 2025, 1742
  • [48] The effect of ambiguous prior knowledge on Bayesian model parameter inference and prediction
    Rinderknecht, Simon L.
    Albert, Carlo
    Borsuk, Mark E.
    Schuwirth, Nele
    Kuensch, Hans R.
    Reichert, Peter
    ENVIRONMENTAL MODELLING & SOFTWARE, 2014, 62 : 300 - 315
  • [49] Explanation Constrains Learning, and Prior Knowledge Constrains Explanation
    Williams, Joseph Jay
    Lombrozo, Tania
    COGNITION IN FLUX, 2010, : 2912 - 2917
  • [50] Combining Deep Reinforcement Learning with Prior Knowledge and Reasoning
    Bougie, Nicolas
    Cheng, Li Kai
    Ichise, Ryutaro
    APPLIED COMPUTING REVIEW, 2018, 18 (02): : 33 - 45