Prior Knowledge in Learning Finite Parameter Spaces

被引:0
|
作者
Glowacka, Dorota [1 ]
Dorard, Louis [1 ]
Medlar, Alan [1 ]
Shawe-Taylor, John [1 ]
机构
[1] UCL, Dept Comp Sci, London WC1E 6BT, England
来源
FORMAL GRAMMAR | 2011年 / 5591卷
关键词
MODEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new framework for computational analysis of language acquisition in a finite parameter space, for instance, in the "principles and parameters" approach to language. The prior knowledge multi-armed bandit algorithm abstracts the idea of a casino of slot machines in which a player has to play machines in order to find out how good they are, but where he has some prior knowledge that some machines are likely to have similar rates of reward. Each grammar is represented as an arm of a bandit machine with the mean-reward function drawn from a Gaussian Process specified by a covariance function between grammars. We test our algorithm on a ten-parameter space and show that the number of iterations required to identify the target grammar is much smaller than the number of all the possible grammars that the learner would have to explore if he was searching exhaustively the entire parameter space.
引用
收藏
页码:199 / 213
页数:15
相关论文
共 50 条
  • [1] A language learning model for finite parameter spaces
    Niyogi, P
    Berwick, RC
    COGNITION, 1996, 61 (1-2) : 161 - 193
  • [2] Parameter learning in hybrid Bayesian networks using prior knowledge
    Inmaculada Pérez-Bernabé
    Antonio Fernández
    Rafael Rumí
    Antonio Salmerón
    Data Mining and Knowledge Discovery, 2016, 30 : 576 - 604
  • [3] Parameter learning in hybrid Bayesian networks using prior knowledge
    Perez-Bernabe, Inmaculada
    Fernandez, Antonio
    Rumi, Rafael
    Salmeron, Antonio
    DATA MINING AND KNOWLEDGE DISCOVERY, 2016, 30 (03) : 576 - 604
  • [4] Sufficiency in finite parameter and sample spaces
    LaMotte, Lynn Roy
    AMERICAN STATISTICIAN, 2008, 62 (03): : 211 - 215
  • [5] Online learning with prior knowledge
    Hazan, Elad
    Megiddo, Nimrod
    LEARNING THEORY, PROCEEDINGS, 2007, 4539 : 499 - +
  • [6] Learning to Walk with Prior Knowledge
    Gottwald, Martin
    Meyer, Dominik
    Shen, Hao
    Diepold, Klaus
    2017 IEEE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2017, : 1369 - 1374
  • [7] INTEREST, PRIOR KNOWLEDGE, AND LEARNING
    TOBIAS, S
    REVIEW OF EDUCATIONAL RESEARCH, 1994, 64 (01) : 37 - 54
  • [8] Dynamic Parameter Selection of LoRa Edge Nodes Using Reinforcement Learning With Link Prior Knowledge
    Zhang, Hui
    Li, Meikun
    Yu, Hongde
    Chen, Hongming
    Wang, Jiangzhou
    IEEE Internet of Things Journal, 2024, 11 (21) : 34420 - 34433
  • [9] Active learning BSM parameter spaces
    Mark D. Goodsell
    Ari Joury
    The European Physical Journal C, 83
  • [10] Active learning BSM parameter spaces
    Goodsell, Mark D.
    Joury, Ari
    EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (04):