Numerical simulation of flow and heat transfer between supercritical CO2 tube and flue gas

被引:5
|
作者
Wang, Ji-min [1 ]
Dong, Fei-long [1 ]
Chen, Xue [1 ]
Gu, Ming-yan [1 ]
Chu, Huaqiang [1 ]
机构
[1] Anhui Univ Technol, Sch Energy & Environm, Maanshan 243002, Anhui, Peoples R China
基金
国家重点研发计划;
关键词
flue gas; inlet temperature; numerical simulation; supercritical CO2; thermal behaviors; CARBON-DIOXIDE;
D O I
10.1002/apj.2295
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
To further improve the thermal efficiency of the coal-fired boiler, lower environment restraints, and minimize key components, the supercritical CO2 Brayton cycle was considered to replace the conventional steam Rankine cycle. In this paper, a three-dimensional mathematical model of the thermal behaviors between the supercritical CO2 tube and flue gas was established using the Lam-Bremhorst k-epsilon model, the gas real model, and the P-1 radiation model. The distributions of the velocity and the temperature between the supercritical CO2 tube and flue gas were investigated numerically. Furthermore, the effects of the supercritical CO2 inlet temperature on the thermal behaviors were also examined. The results show the surface heat transfer coefficient goes up with the supercritical CO2 inlet temperature due to the rise of the thermal conductivity. More significant thermal behaviors and detailed physical explanations were elaborated, which would offer a novel insight to understand, design, and optimize the supercritical CO2 Brayton cycle for engineering applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Effect of tube inclination angel on heat transfer characteristics of supercritical CO2 in tube
    Yang, Chuan-Yong
    Xu, Jin-Liang
    Wang, Xiao-Dong
    Zhang, Wei
    Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2013, 47 (09): : 1522 - 1528
  • [32] Numerical Analysis of Conjugate Heat Transfer of Supercritical CO2 and Pb-Bi in Tube-in-Tube Channels
    Ali, Kashif
    Qaisrani, Mumtaz A.
    Rehman, Haseeb Ur
    Ali, Hafiz Muhammad
    Rehman, Zia Ur
    Baluch, Mansoor A.
    CHEMICAL ENGINEERING & TECHNOLOGY, 2023, 46 (03) : 466 - 473
  • [33] Numerical investigation of heat transfer in supercritical CO2 and water turbulent flow in circular tubes
    Bovard, Samaneh
    Abdi, Mehdi
    Nikou, Mohammad Reza Khosravi
    Daryasafar, Amin
    JOURNAL OF SUPERCRITICAL FLUIDS, 2017, 119 : 88 - 103
  • [34] Numerical Study on the Effect of Diameter on Supercritical CO2 Heat Transfer and Flow in Horizontal Tubes
    He, Ya-Ling (yalinghe@mail.xjtu.edu.cn), 2018, Science Press (39):
  • [35] Numerical investigation of heat transfer and flow characteristics of supercritical CO2 in U-duct
    Chen, Wei
    Yang, Zenan
    Yang, Li
    Chyu, Minking K.
    APPLIED THERMAL ENGINEERING, 2018, 144 : 532 - 539
  • [36] Numerical study on Flow Characteristics of Microchannel Shell-and-Tube Heat Exchanger with Supercritical CO2
    Jiang Xinying
    Fang Yufeng
    Liu Meng
    2019 2ND INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING, INDUSTRIAL MATERIALS AND INDUSTRIAL ELECTRONICS (MEIMIE 2019), 2019, : 140 - 150
  • [37] Cooling Heat Transfer Attributions of Supercritical CO2 in a Spiral Groove Tube Casing Heat Exchanger: A Numerical Investigation
    Wang, Dong
    Deng, Sensen
    Tao, Yinshuang
    Jiang, Tiancheng
    Li, Mengxue
    Lu, Yuehong
    Journal of Thermal Science and Engineering Applications, 2024, 16 (08)
  • [38] Research of Heat Transfer Characteristics of Supercritical CO2 in Spiral Tube Heat Exchangers
    Cheng, Jian
    Wang, Wendong
    Yu, Jianyang
    Jiang, Huadong
    Gao, Jianmin
    Xu, Dan
    Energies, 2024, 17 (23)
  • [39] Experimental investigation of buoyancy effects on convection heat transfer of supercritical CO2 flow in a horizontal tube
    Tanimizu, Katsuyoshi
    Sadr, Reza
    HEAT AND MASS TRANSFER, 2016, 52 (04) : 713 - 726
  • [40] Experimental investigation of heat transfer in vertical upward and downward supercritical CO2 flow in a circular tube
    Kim, Dong Eok
    Kim, Moo-Hwan
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2011, 32 (01) : 176 - 191