Joint semi-supervised learning of Hidden Conditional Random Fields and Hidden Markov Models

被引:5
|
作者
Soullard, Yann [1 ]
Saveski, Martin [1 ]
Artieres, Thierry [1 ]
机构
[1] Univ Paris 06, LIP6, F-75005 Paris, France
基金
日本学术振兴会;
关键词
Hidden Markov Models; Hidden Conditional Random Fields; Semi-supervised learning; Co-training;
D O I
10.1016/j.patrec.2013.03.028
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although semi-supervised learning has generated great interest for designing classifiers on static patterns, there has been comparatively fewer works on semi-supervised learning for structured outputs and in particular for sequences. We investigate semi-supervised approaches for learning hidden state conditional random fields for sequence classification. We propose a new approach that iteratively learns a pair of discriminative-generative models, namely Hidden Markov Models (HMMs) and Hidden Conditional Random Fields (HCRFs). Our method builds on simple strategies for semi-supervised learning of HMMs and on strategies for initializing HCRFs from HMMs. We investigate the behavior of the method on artificial data and provide experimental results for two real problems, handwritten character recognition and financial chart pattern recognition. We compare our approach with state of the art semi-supervised methods. (C) 2013 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:161 / 171
页数:11
相关论文
共 50 条
  • [21] Estimation for hidden Markov random fields
    Elliott, RJ
    Aggoun, L
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1996, 50 (03) : 343 - 351
  • [22] Semi-Supervised Conditional Random Fields for Improved Sequence Segmentation and Labeling
    Jiao, Feng
    Wang, Shaojun
    Lee, Chi-Hoon
    Greiner, Russell
    Schuurmans, Dale
    COLING/ACL 2006, VOLS 1 AND 2, PROCEEDINGS OF THE CONFERENCE, 2006, : 209 - 216
  • [23] Semi-Supervised SVM With Extended Hidden Features
    Dong, Aimei
    Chung, Fu-Lai
    Deng, Zhaohong
    Wang, Shitong
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (12) : 2924 - 2937
  • [24] Weakly supervised detection of video events using hidden conditional random fields
    Shirahama, Kimiaki
    Grzegorzek, Marcin
    Uehara, Kuniaki
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2015, 4 (01) : 17 - 32
  • [25] Cervical Histopathology Image Classification Using Multilayer Hidden Conditional Random Fields and Weakly Supervised Learning
    Li, Chen
    Chen, Hao
    Zhang, Le
    Xu, Ning
    Xue, Dan
    Hu, Zhijie
    Ma, He
    Sun, Hongzan
    IEEE ACCESS, 2019, 7 : 90378 - 90397
  • [26] Belief networks, hidden Markov models, and Markov random fields: A unifying view
    Smyth, P
    PATTERN RECOGNITION LETTERS, 1997, 18 (11-13) : 1261 - 1268
  • [27] Hidden semi-Markov models
    Yu, Shun-Zheng
    ARTIFICIAL INTELLIGENCE, 2010, 174 (02) : 215 - 243
  • [28] Crandem systems-conditional random field acoustic models for hidden Markov models
    Fosler-Lussier, Eric
    Morris, Jeremy
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 4049 - 4052
  • [29] Variational Infinite Hidden Conditional Random Fields
    Bousmalis, Konstantinos
    Zafeiriou, Stefanos
    Morency, Louis-Philippe
    Pantic, Maja
    Ghahramani, Zoubin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (09) : 1917 - 1929
  • [30] Hidden Conditional Random Fields for Phone Recognition
    Sung, Yun-Hsuan
    Jurafsky, Dan
    2009 IEEE WORKSHOP ON AUTOMATIC SPEECH RECOGNITION & UNDERSTANDING (ASRU 2009), 2009, : 107 - 112