Complex powers of a nonelliptic differential operator in L p-spaces

被引:0
|
作者
Karasev, D. N. [1 ]
Nogin, V. A.
机构
[1] Rostov State Econ Univ, Rostov Na Donu, Russia
关键词
Convolution Operator; Integral Transform; Wave Operator; Positive Real Part; Complex Power;
D O I
10.1134/S0012266113100091
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the spaces L (p) = L (p) (a"e (n) ), we study complex powers of a nonelliptic differential operator D = I +Delta (x') represented in the form of partial acoustic potentials (in the variable x'). By using the method of approximative inverse operators, we construct the inversion of the potentials A (x) (gamma) ,phi with L (p) -densities and describe the image A (x) (gamma) ,(L (p) ) in terms of the inverting constructions.
引用
收藏
页码:1282 / 1289
页数:8
相关论文
共 50 条
  • [41] Scattered P-spaces of weight ω1
    Bielas, Wojciech
    Kucharski, Andrzej
    Plewik, Szymon
    TOPOLOGY AND ITS APPLICATIONS, 2023, 334
  • [42] CATEGORY OF P-SPACES AND FUNCTOR-P
    MISRA, AK
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (04): : 679 - &
  • [43] ON QUASI P-SPACES AND THEIR APPLICATIONS IN SUBMAXIMAL AND NODEC SPACES
    Aliabad, A. R.
    Bagheri, V.
    Jahromi, M. Karavan
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (03) : 835 - 852
  • [44] Optimal regularity conditions for elliptic problems via Lδp-spaces
    Souplet, P
    DUKE MATHEMATICAL JOURNAL, 2005, 127 (01) : 175 - 192
  • [45] Examples of pseudo-differential operators in L(p) spaces with unbounded imaginary powers
    Hieber, M
    ARCHIV DER MATHEMATIK, 1996, 66 (02) : 126 - 131
  • [46] LINDELOF P-SPACES NEED NOT BE SOKOLOV
    Tkachuk, Vladimir V.
    MATHEMATICA SLOVACA, 2017, 67 (01) : 227 - 234
  • [47] Constructions of Lindelof scattered P-spaces
    Martinez, Juan Carlos
    Soukup, Lajos
    FUNDAMENTA MATHEMATICAE, 2022, : 271 - 286
  • [48] Inverse limits which are P-spaces
    Bielas, Wojciech
    Kucharski, Andrzej
    Plewik, Szymon
    TOPOLOGY AND ITS APPLICATIONS, 2022, 312
  • [49] On convolution in weighted DL p-spaces
    Wagner, Peter
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (04) : 472 - 477
  • [50] FUNCTIONAL CHARACTERIZATIONS OF CERTAIN P-SPACES
    BURKE, D
    LUTZER, D
    LEVI, S
    TOPOLOGY AND ITS APPLICATIONS, 1985, 20 (02) : 161 - 165