Automatic State Machine Reconstruction From Legacy Programmable Logic Controller Using Data Collection and SAT Solver

被引:11
|
作者
Chivilikhin, Daniil [1 ]
Patil, Sandeep [2 ]
Chukharev, Konstantin [1 ]
Cordonnier, Anthony [3 ]
Vyatkin, Valeriy [1 ,2 ,4 ]
机构
[1] ITMO Univ, Comp Technol Lab, St Petersburg 197101, Russia
[2] Lulea Univ Technol, Dept Comp Sci Elect & Space Engn, S-97187 Lulea, Sweden
[3] ENEDIS, F-69210 St Pierre La Palud, France
[4] Aalto Univ, Dept Elect Engn & Automat, Espoo 02150, Finland
基金
欧盟地平线“2020”;
关键词
Data collection; IEC Standards; Industries; Noise measurement; Automation; Software algorithms; Hardware; Control system synthesis; inference algorithms; reverse engineering; automata; automation; software; PLC; SAT; FINITE; IDENTIFICATION;
D O I
10.1109/TII.2020.2992235
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nowadays an increasing number of industries are considering moving toward being Industry 4.0 compliant. But this transition is not straightforward: transfer to new system can lead to significant production downtime, resulting in delays and cost overruns. The best way is systematic seamless transition to newer and advanced technologies that Industry 4.0 offers. This article proposes a framework based on automatic synthesis methods that learns the behavior of an existing legacy programmable logic controller (PLC) and generates state machines that can be incorporated into IEC 61499 function blocks. Proposed algorithms are based on Boolean satisfiability (SAT) solvers. The first algorithm accepts a set of noisy PLC traces and produces a set of candidate state machines that satisfy the traces. The second algorithm accepts error-free traces and synthesizes a modular controller that may be distributed across several physical devices. The toolchain architecture is exemplified on a laboratory scale Festo mechatronic system.
引用
收藏
页码:7821 / 7831
页数:11
相关论文
共 50 条
  • [21] Transformation from Petri nets model to programmable logic controller using one-to-one mapping technique
    Thapa, Devinder
    Dangol, Suraj
    Wang, Gi-Nam
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION JOINTLY WITH INTERNATIONAL CONFERENCE ON INTELLIGENT AGENTS, WEB TECHNOLOGIES & INTERNET COMMERCE, VOL 2, PROCEEDINGS, 2006, : 228 - +
  • [22] Quantum State Reconstruction Using Binary Data from On/Off Photodetection
    Brida, Giorgio
    Genovese, Marco
    Gramegna, Marco
    Meda, Alice
    Piacentini, Fabrizio
    Traina, Paolo
    Predazzi, Enrico
    Olivares, Stefano
    Paris, Matteo G. A.
    ADVANCED SCIENCE LETTERS, 2011, 4 (01) : 1 - 11
  • [23] Reprocessing and interpretation of legacy seismic data using machine learning from the Granada Basin, Spain
    Araque-Perez, Carlos Jose
    Teixido, Teresa
    Mancilla, Flor de Lis
    Morales, Jose
    TECTONOPHYSICS, 2024, 885
  • [24] A Comparative Study of Data Collection Periods for Just-In-Time Defect Prediction Using the Automatic Machine Learning Method
    Ohara, Kosuke
    Aman, Hirohisa
    Amasaki, Sousuke
    Yokogawa, Tomoyuki
    Kawahara, Minoru
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2023, E106D (02) : 166 - 169
  • [25] IoT Off-Grid, Data Collection from a Machine Learning Classification Using UAV
    Goulart, Ademir
    Roschildt Pinto, Alex Sandro
    Boava, Adao
    Castelo Branco, Kalinka R. L. J.
    SENSORS, 2022, 22 (19)
  • [26] AUTOMATIC BUILDING RECONSTRUCTION FROM HIGH RESOLUTION INSAR DATA USING STOCHASTIC GEOMETRICAL MODEL
    Fu, Kun
    Zhang, Yue
    Sun, Xian
    Diao, Wenhui
    Wu, Bin
    Wang, Hongqi
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 1579 - 1582
  • [27] Automatic representation and reconstruction of DBM from LiDAR data using Recursive Minimum Bounding Rectangle
    Kwak, Eunju
    Habib, Ayman
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 93 : 171 - 191
  • [28] Automatic Vehicle Extraction from Airborne LiDAR Data of Urban Areas using Morphological Reconstruction
    Yao, Wei
    Hinz, Stefan
    Stilla, Uwe
    2008 IAPR WORKSHOP ON PATTERN RECOGNITION IN REMOTE SENSING, 2008, : 13 - 16
  • [29] Emotional state classification from EEG data using machine learning approach
    Wang, Xiao-Wei
    Nie, Dan
    Lu, Bao-Liang
    NEUROCOMPUTING, 2014, 129 : 94 - 106
  • [30] Automatic segmentation of blood vessels from MR angiography volume data by using fuzzy logic technique
    Kobashi, S
    Hata, Y
    Tokimoto, Y
    Ishikawa, M
    MEDICAL IMAGING 1999: IMAGE PROCESSING, PTS 1 AND 2, 1999, 3661 : 968 - 976