Super-Resolution Nonlinear Photothermal Microscopy

被引:107
|
作者
Nedosekin, Dmitry A. [1 ]
Galanzha, Ekaterina I. [1 ]
Dervishi, Enkeleda [2 ]
Biris, Alexandru S. [2 ]
Zharov, Vladimir P. [1 ]
机构
[1] Univ Arkansas Med Sci, Arkansas Nanomed Ctr, Little Rock, AR 72205 USA
[2] Univ Arkansas, Ctr Integrat Nanotechnol Sci, Little Rock, AR 72204 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
super-resolution; photothermal microscopy; nonlinear effects; spatial sharpening; cell imaging; photoacoustic microscopy; THERMAL-LENS MICROSCOPE; CARBON NANOTUBES; IN-VIVO; CELLS; DIFFRACTION; NANOPARTICLES; NANOCLUSTERS; TOMOGRAPHY; CAVITATION; NANOSCALE;
D O I
10.1002/smll.201300024
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Super-resolution fluorescence microscopy enables imaging of fluorescent structures beyond the diffraction limit. However, this technique cannot be applied to weakly fluorescent cellular components or labels. As an alternative, photothermal microscopy based on nonradiative transformation of absorbed energy into heat has demonstrated imaging of nonfluorescent structures including single molecules and similar to 1-nm gold nanoparticles. However, previously photothermal imaging has been performed with a diffraction-limited resolution only. Herein, super-resolution, far-field photothermal microscopy based on nonlinear signal dependence on the laser energy is introduced. Among various nonlinear phenomena, including absorption saturation, multiphoton absorption, and signal temperature dependence, signal amplification by laser-induced nanobubbles around overheated nano-objects is explored. A Gaussian laser beam profile is used to demonstrate the image spatial sharpening for calibrated 260-nm metal strips, resolving of a plasmonic nanoassembly, visualization of 10-nm gold nanoparticles in graphene, and hemoglobin nanoclusters in live erythrocytes with resolution down to 50 nm. These nonlinear phenomena can be used for 3D imaging with improved lateral and axial resolution in most photothermal methods, including photoacoustic microscopy.
引用
收藏
页码:135 / 142
页数:8
相关论文
共 50 条
  • [32] The Principles of Super-Resolution Fluorescence Microscopy
    Klementieva, N. V.
    Zagaynova, E. V.
    Lukyanov, K. A.
    Mishin, A. S.
    SOVREMENNYE TEHNOLOGII V MEDICINE, 2016, 8 (02) : 130 - 138
  • [33] Multiview confocal super-resolution microscopy
    Wu, Yicong
    Han, Xiaofei
    Su, Yijun
    Glidewell, Melissa
    Daniels, Jonathan S.
    Liu, Jiamin
    Sengupta, Titas
    Rey-Suarez, Ivan
    Fischer, Robert
    Patel, Akshay
    Combs, Christian
    Sun, Junhui
    Wu, Xufeng
    Christensen, Ryan
    Smith, Corey
    Bao, Lingyu
    Sun, Yilun
    Duncan, Leighton H.
    Chen, Jiji
    Pommier, Yves
    Shi, Yun-Bo
    Murphy, Elizabeth
    Roy, Sougata
    Upadhyaya, Arpita
    Colon-Ramos, Daniel
    La Riviere, Patrick
    Shroff, Hari
    NATURE, 2021, 600 (7888) : 279 - +
  • [34] Super-resolution microscopy writ large
    Peter Engerer
    Caroline Fecher
    Thomas Misgeld
    Nature Biotechnology, 2016, 34 : 928 - 930
  • [35] Recent innovations in super-resolution microscopy
    Knight, Alex E.
    Peckham, Michelle
    METHODS, 2015, 88 : 1 - 2
  • [36] Atomic force microscopy in super-resolution
    Vogt, Nina
    NATURE METHODS, 2021, 18 (08) : 859 - 859
  • [37] Super-resolution microscopy for the life sciences
    Pitruzzello, Giampaolo
    NATURE PHOTONICS, 2025, 19 (03) : 222 - 223
  • [38] Fluorogenic probes for super-resolution microscopy
    Kozma, Eszter
    Kele, Peter
    ORGANIC & BIOMOLECULAR CHEMISTRY, 2019, 17 (02) : 215 - 233
  • [39] Optical super-resolution microscopy in neurobiology
    Sigrist, Stephan J.
    Sabatini, Bernardo L.
    CURRENT OPINION IN NEUROBIOLOGY, 2012, 22 (01) : 86 - 93
  • [40] SUPER-RESOLUTION BY CONFOCAL FLUORESCENT MICROSCOPY
    COX, IJ
    SHEPPARD, CJR
    WILSON, T
    OPTIK, 1982, 60 (04): : 391 - 396