Polarization radiation of vortex electrons with large orbital angular momentum

被引:31
|
作者
Ivanov, Igor P. [1 ,2 ]
Karlovets, Dmitry V. [3 ]
机构
[1] Univ Liege, IFPA, B-4000 Liege, Belgium
[2] Sobolev Inst Math, Novosibirsk 630090, Russia
[3] Tomsk Polytech Univ, Tomsk 634050, Russia
来源
PHYSICAL REVIEW A | 2013年 / 88卷 / 04期
关键词
TRANSITION RADIATION; SPIN LIGHT; NEUTRINO; BEAMS; BREMSSTRAHLUNG;
D O I
10.1103/PhysRevA.88.043840
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Vortex electrons-freely propagating electrons whose wave functions have helical wave fronts-could become a novel tool in the physics of electromagnetic radiation. They carry a nonzero intrinsic orbital angular momentum (OAM) l with respect to the propagation axis and, for l >> 1, a large OAM-induced magnetic moment mu approximate to l mu(B) (mu(B) is the Bohr magneton), which influences the radiation of electromagnetic waves. Here, we consider in detail the OAM-induced effects caused by such electrons in two forms of polarization radiation, namely, in Cherenkov radiation and transition radiation. Thanks to the large l, we can neglect quantum or spin-induced effects, which are of the order of (h) over bar omega/ E-e << 1, but retain the magnetic moment contribution l (h) over bar omega/ E-e less than or similar to 1, which makes the quasiclassical approach to polarization radiation applicable. We discuss the magnetic moment contribution to polarization radiation, which has never been experimentally observed, and study how its visibility depends on the kinematical parameters and the medium permittivity. In particular, it is shown that this contribution can, in principle, be detected in azimuthally nonsymmetrical problems, for example when vortex electrons obliquely cross a metallic screen (transition radiation) or move near it (diffraction radiation). We predict a left-right angular asymmetry of the transition radiation (in the plane where the charge radiation distributions would stay symmetric), which appears due to an effective interference between the charge radiation field and the magnetic moment contribution. Numerical values of this asymmetry for vortex electrons with E-e = 300 keV and l = 100-1000 are 0.1%-1%, and we argue that this effect could be detected with existing technology. The finite conductivity of the target and frequency dispersion play crucial roles in these predictions.
引用
下载
收藏
页数:15
相关论文
共 50 条
  • [41] Grafted optical vortex with controllable orbital angular momentum distribution
    Zhang, Hao
    Li, Xinzhong
    Ma, Haixiang
    Tang, Miaomiao
    Li, Hehe
    Tang, Jie
    Cai, Yangjian
    OPTICS EXPRESS, 2019, 27 (16) : 22930 - 22938
  • [42] Orbital-Angular-Momentum-Based Electromagnetic Vortex Imaging
    Liu, Kang
    Cheng, Yongqiang
    Yang, Zhaocheng
    Wang, Hongqiang
    Qin, Yuliang
    Li, Xiang
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2015, 14 : 711 - 714
  • [43] Orbital angular momentum of superposition of identical shifted vortex beams
    Kovalev, A. A.
    Kotlyar, V. V.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2015, 32 (10) : 1805 - 1810
  • [44] Orbital angular momentum of the vortex beams through a tilted lens
    Luo, Meilan
    Zhang, Zhaohui
    Shen, Donghui
    Zhao, Daomu
    OPTICS COMMUNICATIONS, 2017, 396 : 206 - 209
  • [45] Vortex-free laser beam with an orbital angular momentum
    Kotlyar V.V.
    Kovalev A.A.
    2017, Institution of Russian Academy of Sciences (41) : 573 - 576
  • [46] Generation of a Spatiotemporal Vortex with a Purely Transverse Orbital Angular Momentum
    Chong, Andy
    Wan, Chenhao
    Chen, Jian
    Zhan, Qiwen
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [47] Acoustic orbital angular momentum prism for efficient vortex perception
    Jiang, Xue
    Wang, Nengyin
    Zhang, Chuanxin
    Fang, Xinsheng
    Li, Shengquan
    Sun, Xiaoyu
    Li, Yong
    Ta, Dean
    Wang, Weiqi
    APPLIED PHYSICS LETTERS, 2021, 118 (07)
  • [48] Interferometric Detection Method for Orbital Angular Momentum of Vortex Beams
    Pei Chunying
    Mao Zhixiang
    Xu Supeng
    Xia Yong
    Yin Yaling
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (14)
  • [49] Control of orbital angular momentum with partially coherent vortex beams
    Zhang, Yongtao
    Cai, Yangjian
    Gbur, Greg
    OPTICS LETTERS, 2019, 44 (15) : 3617 - 3620
  • [50] Orbital angular momentum detection device for vortex microwave photons
    Chao Zhang
    Xuefeng Jiang
    Zheyuan Wang
    Yuanhe Wang
    Qiuli Wu
    Xiangdong Xie
    Wanyu Tian
    Communications Engineering, 2 (1):