Secondary batteries with multivalent ions for energy storage

被引:140
|
作者
Xu, Chengjun [1 ]
Chen, Yanyi [1 ]
Shi, Shan [1 ,2 ]
Li, Jia [1 ]
Kang, Feiyu [1 ,2 ]
Su, Dangsheng [3 ,4 ]
机构
[1] Tsinghua Univ, Grad Sch Shenzhen, Shenzhen 518055, Peoples R China
[2] Tsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
[3] Max Planck Gesell, Fritz Haber Inst, Dept Inorgan Chem, D-14195 Berlin, Germany
[4] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
关键词
ZINC-ION; MANGANESE-DIOXIDE; REVERSIBLE INSERTION; AQUEOUS-SOLUTION; CATHODE MATERIAL; LITHIUM; CHALLENGES; BEHAVIOR; ALPHA-MNO2; MECHANISM;
D O I
10.1038/srep14120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The use of electricity generated from clean and renewable sources, such as water, wind, or sunlight, requires efficiently distributed electrical energy storage by high-power and high-energy secondary batteries using abundant, low-cost materials in sustainable processes. American Science Policy Reports state that the next-generation "beyond-lithium" battery chemistry is one feasible solution for such goals. Here we discover new "multivalent ion" battery chemistry beyond lithium battery chemistry. Through theoretic calculation and experiment confirmation, stable thermodynamics and fast kinetics are presented during the storage of multivalent ions (Ni2+, Zn2+, Mg2+, Ca2+, Ba2+, or La3+ ions) in alpha type manganese dioxide. Apart from zinc ion battery, we further use multivalent Ni2+ ion to invent another rechargeable battery, named as nickel ion battery for the first time. The nickel ion battery generally uses an alpha type manganese dioxide cathode, an electrolyte containing Ni2+ ions, and Ni anode. The nickel ion battery delivers a high energy density (340 Wh kg(-1), close to lithium ion batteries), fast charge ability (1 minute), and long cycle life (over 2200 times).
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Constructing Chelation for Boosting Storage of Large-Sized or Multivalent Ions
    Guan, Linnan
    Zou, Jincheng
    Mao, Minglei
    Wang, Chengliang
    [J]. ACCOUNTS OF MATERIALS RESEARCH, 2024, 5 (05): : 560 - 570
  • [22] A renewable biopolymer cathode with multivalent metal ions for enhanced charge storage
    Admassie, Shimelis
    Elfwing, Anders
    Jager, Edwin W. H.
    Bao, Qinye
    Inganas, Olle
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (06) : 1974 - 1979
  • [23] Interphasing Multivalent Batteries
    Ponrouch, Alexandre
    Palacin, M. Rosa
    [J]. JOULE, 2018, 2 (06) : 1028 - 1030
  • [24] Multivalent rechargeable batteries
    Ponrouch, A.
    Bitenc, J.
    Dominko, R.
    Lindahl, N.
    Johansson, P.
    Palacin, M. R.
    [J]. ENERGY STORAGE MATERIALS, 2019, 20 : 253 - 262
  • [25] Roadmap on multivalent batteries
    Palacin, M. Rosa
    Johansson, Patrik
    Dominko, Robert
    Dlugatch, Ben
    Aurbach, Doron
    Li, Zhenyou
    Fichtner, Maximilian
    Luzanin, Olivera
    Bitenc, Jan
    Wei, Zhixuan
    Glaser, Clarissa
    Janek, Juergen
    Fernandez-Barquin, Ana
    Mainar, Aroa R.
    Leonet, Olatz
    Urdampilleta, Idoia
    Blazquez, J. Alberto
    Tchitchekova, Deyana S.
    Ponrouch, Alexandre
    Canepa, Pieremanuele
    Gautam, Gopalakrishnan Sai
    Casilda, Raul San Roman Gallego
    Martinez-Cisneros, Cynthia S.
    Torres, Nieves Urena
    Varez, Alejandro
    Sanchez, Jean-Yves
    Kravchyk, Kostiantyn, V
    Kovalenko, Maksym, V
    Teck, Anastasia A.
    Shiel, Huw
    Stephens, Ifan E. L.
    Ryan, Mary P.
    Zemlyanushin, Eugen
    Dsoke, Sonia
    Grieco, Rebecca
    Patil, Nagaraj
    Marcilla, Rebeca
    Gao, Xuan
    Carmalt, Claire J.
    He, Guanjie
    Titirici, Maria-Magdalena
    [J]. JOURNAL OF PHYSICS-ENERGY, 2024, 6 (03):
  • [26] Influence of multivalent ions on renewable energy generation in reverse electrodialysis
    Vermaas, David A.
    Veerman, Joost
    Saakes, Michel
    Nijmeijer, Kitty
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (04) : 1434 - 1445
  • [27] Research progress of key materials for energy photoelectric conversion and large-scale energy storage secondary batteries
    Liang S.-Q.
    Cheng Y.-B.
    Fang G.-Z.
    Cao X.-X.
    Shen W.-J.
    Zhong J.
    Pan A.-Q.
    Zhou J.
    [J]. Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 2019, 29 (09): : 2064 - 2114
  • [28] Multivalent-Ion Electrochromic Energy Saving and Storage Devices
    Tong, Zhongqiu
    Zhu, Xing
    Xu, Hongbo
    Li, Zhishan
    Li, Shaoyuan
    Xi, Fengshuo
    Kang, Tianxing
    Ma, Wenhui
    Lee, Chun-Sing
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2024,
  • [29] A universal strategy towards high–energy aqueous multivalent–ion batteries
    Xiao Tang
    Dong Zhou
    Bao Zhang
    Shijian Wang
    Peng Li
    Hao Liu
    Xin Guo
    Pauline Jaumaux
    Xiaochun Gao
    Yongzhu Fu
    Chengyin Wang
    Chunsheng Wang
    Guoxiu Wang
    [J]. Nature Communications, 12
  • [30] Mechanisms elucidation of secondary seawater batteries: From ion migration to conversion for sustainable energy storage
    Lu, Yile
    Yuan, Yu
    Liang, Tianyue
    Jia, Haowei
    Meng, Linghui
    Zhang, Xinren
    Zhang, Shuo
    Wen, Bohao
    Feng, Ziheng
    Yin, Tao
    Guan, Peiyuan
    Zhou, Lu
    Zhou, Yingze
    Chu, Dewei
    [J]. CHEMICAL ENGINEERING JOURNAL, 2024, 498