Peirce decompositions, idempotents and rings

被引:11
|
作者
Anh, Pham N. [1 ]
Birkenmeier, Gary F. [2 ]
van Wyk, Leon [3 ]
机构
[1] Hungarian Acad Sci, Renyi Inst Math, Pf 127, H-1364 Budapest, Hungary
[2] Univ Louisiana Lafayette, Dept Math, Lafayette, LA 70504 USA
[3] Stellenbosch Univ, Dept Math Sci, P Bag X1, ZA-7602 Stellenbosch, South Africa
基金
巴西圣保罗研究基金会; 新加坡国家研究基金会;
关键词
Idempotent; Peirce decomposition; Peirce trivial; n-Peirce ring; Generalized matrix ring; Morita context; J-trivial; B-trivial; MATRIX REPRESENTATIONS;
D O I
10.1016/j.jalgebra.2020.08.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Idempotents dominate the structure theory of rings. The Peirce decomposition induced by an idempotent provides a natural environment for defining and classifying new types of rings. This point of view offers a way to unify and to expand the classical theory of semiperfect rings and idempotents to much larger classes of rings. Examples and applications are included. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:247 / 275
页数:29
相关论文
共 50 条
  • [41] LIFTING IDEMPOTENTS AND EXCHANGE RINGS
    NICHOLSON, K
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (07): : A708 - A708
  • [42] LIFTING IDEMPOTENTS AND EXCHANGE RINGS
    NICHOLSON, WK
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 229 (MAY) : 269 - 278
  • [43] On rings determined by their idempotents and units
    Cetin, Mirac
    Kosan, M. Tamer
    Zemlicka, Jan
    [J]. COMMUNICATIONS IN ALGEBRA, 2023, 51 (07) : 2820 - 2829
  • [44] Semicommutativity of Rings by the Way of Idempotents
    Kose, Handan
    Ungor, Burcu
    Harmanci, Abdullah
    [J]. FILOMAT, 2019, 33 (11) : 3497 - 3508
  • [45] IDEMPOTENTS IN POLYNOMIAL-RINGS
    KAMAL, AAM
    [J]. ACTA MATHEMATICA HUNGARICA, 1992, 59 (3-4) : 355 - 363
  • [46] ON SEMI-IDEMPOTENTS IN RINGS
    JINNAH, MI
    KANNAN, B
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1986, 62 (06) : 211 - 212
  • [47] IDEMPOTENTS IN CERTAIN MATRIX RINGS OVER POLYNOMIAL RINGS
    Balmaceda, Jose Maria P.
    Datu, Joanne Pauline P.
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2020, 27 : 1 - 12
  • [48] The Structure of Idempotents in Neutrosophic Rings and Neutrosophic Quadruple Rings
    Ma, Yingcang
    Zhang, Xiaohong
    Smarandache, Florentin
    Zhang, Juanjuan
    [J]. SYMMETRY-BASEL, 2019, 11 (10):
  • [49] GROUP RINGS WITHOUT NONTRIVIAL IDEMPOTENTS
    SEHGAL, SK
    ZASSENHAUS, HJ
    [J]. ARCHIV DER MATHEMATIK, 1977, 28 (04) : 378 - 380
  • [50] Semi-Idempotents in Neutrosophic Rings
    Kandasamy, Vasantha W. B.
    Kandasamy, Ilanthenral
    Smarandache, Florentin
    [J]. MATHEMATICS, 2019, 7 (06)