Synthesis and Electrochemical Properties of Stannous Oxide Clinopinacoid as Anode Material for Lithium Ion Batteries

被引:3
|
作者
Iqbal, M. Zubair [1 ]
Wang, Fengping [1 ]
Rafique, M. Yasir [1 ]
Ali, Shujaat [1 ]
Din, Rafi Ud [2 ]
Farooq, M. Hassan [3 ]
Khan, Matiullah [3 ]
Ali, Murad [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Appl Sci, Dept Phys, Beijing 100083, Peoples R China
[2] PINSTECH, Div Mat, Islamabad, Pakistan
[3] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
关键词
Micro-Structures; Tin Monoxide; Hydrothermal Method; Electrochemical Properties; RECHARGEABLE BATTERIES; HYDROTHERMAL SYNTHESIS; NANOCRYSTALLINE SNO; ROUTE; COMPOSITE; POWDERS;
D O I
10.1166/jnn.2013.7101
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Tin monoxide is a significant functional semiconductor material which employed to a wide area of applications especially optical and energy storage devices. Presently, template free hydrothermal technique has been employing to synthesize stannous oxide (SnO) clinopinacoid type controlled morphology using SnCl2 center dot 2H(2)O, NH3, and H2O as raw materials. The crystalline phase, morphology, particle size and component were characterized by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) and field-emission scanning electron microscopy (FESEM). FESEM results exhibited the large scale homogeneous growth of clinopinacoid architecture with the obvious size of 5 similar to 7 micrometers. The XRD results showed that the average crystallite size of the tetragonal phase romarchite SnO was about 29 nm calculated from the FWHM of X-ray diffraction pattern. The dominant Raman active modes A(1g) = 205 cm(-1), B-1g = 105-107 cm(-1) and about 6 cm(-1) redshift were observed by the Raman spectroscopy, which further confirmed the existence of the nano tetragonal phase SnO. The electrochemical performance of as-synthesized SnO clinopinacoid structure as the anode material for lithium ion batteries was investigated. It was observed that the first discharge capacity of the two samples could reach a very high value of 1502 mA h g(-1) and 1422 mA h g(-1) respectively. The effect of nitrogen concentration on morphology as well as cyclic performance of Li-Ion-batteries was also discussed.
引用
收藏
页码:1773 / 1779
页数:7
相关论文
共 50 条
  • [41] Effect of Synthesis on Performance of MXene/Iron Oxide Anode Material for Lithium-Ion Batteries
    Ali, Adnan
    Hantanasirisakul, Kanit
    Abdala, Ahmed
    Urbankowski, Patrick
    Zhao, Meng-Qang
    Anasori, Babak
    Gogotsi, Yury
    Aissa, Brahim
    Mahmoud, Khaled A.
    LANGMUIR, 2018, 34 (38) : 11325 - 11334
  • [42] Studies of the electrochemical properties of nanosize Co3O4 oxide as an anode material for lithium-ion batteries
    Chen, Y
    Wang, GX
    Konstantinov, K
    Ahn, JH
    Liu, HK
    Dou, SX
    METASTABLE, MECHANICALLY ALLOYED AND NANOCRYSTALLINE MATERIALS, 2003, : 625 - 628
  • [43] Synthesis and electrochemical properties of coaxial-cable nanostructure carbon wrapped manganese oxide as anode for lithium ion batteries
    Wang, Kaiqian
    Zhang, Shuqiong
    Cheng, Yalin
    Yu, Xinai
    Tu, Biyang
    Tao, Haisheng
    POLYHEDRON, 2020, 181 (181)
  • [44] Synthesis and electrochemical properties of nickel oxide as anodes for lithium-ion batteries
    Ortiz, Mariela G.
    Visintin, Arnaldo
    Real, Silvia G.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2021, 883
  • [45] Electrochemical performance of modified artificial graphite as anode material for lithium ion batteries
    Wang, Chunmei
    Zhao, Hailei
    Wang, Jing
    Wang, Jie
    Lv, Pengpeng
    IONICS, 2013, 19 (02) : 221 - 226
  • [46] Electrochemical Activity of Black Phosphorus as an Anode Material for Lithium-Ion Batteries
    Sun, Li-Qun
    Li, Ming-Juan
    Sun, Kai
    Yu, Shi-Hua
    Wang, Rong-Shun
    Xie, Hai-Ming
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (28): : 14772 - 14779
  • [47] Electrochemical investigation of silicon/carbon composite as anode material for lithium ion batteries
    Zuo, Pengjian
    Wang, Zhenbo
    Yin, Geping
    Jia, Dechang
    Cheng, Xinqun
    Du, Chunyu
    Shi, Pengfei
    JOURNAL OF MATERIALS SCIENCE, 2008, 43 (09) : 3149 - 3152
  • [48] Electrochemical performance of modified artificial graphite as anode material for lithium ion batteries
    Chunmei Wang
    Hailei Zhao
    Jing Wang
    Jie Wang
    Pengpeng Lv
    Ionics, 2013, 19 : 221 - 226
  • [49] Facile synthesis and electrochemical performances of hollow graphene spheres as anode material for lithium-ion batteries
    Yao, Ran-Ran
    Zhao, Dong-Lin
    Bai, Li-Zhong
    Yao, Ning-Na
    Xu, Li
    NANOSCALE RESEARCH LETTERS, 2014, 9 : 1 - 6
  • [50] Synthesis and electrochemical investigation of highly dispersed ZnO nanoparticles as anode material for lithium-ion batteries
    Haipeng Li
    Yaqiong Wei
    Yongguang Zhang
    Fuxing Yin
    Chengwei Zhang
    Gongkai Wang
    Zhumabay Bakenov
    Ionics, 2016, 22 : 1387 - 1393