Generalizing the Fermi velocity of strained graphene from uniform to nonuniform strain

被引:80
|
作者
Oliva-Leyva, M. [1 ]
Naumis, Gerardo G. [1 ,2 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Fis, Dept Fis Quim, Mexico City 01000, DF, Mexico
[2] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA
关键词
ELECTRONIC-PROPERTIES;
D O I
10.1016/j.physleta.2015.05.039
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The relevance of the strain-induced Dirac point shift to obtain the appropriate anisotropic Fermi velocity of strained graphene is demonstrated. Then a critical revision of the available effective Dirac Hamiltonians is made by studying in detail the limiting case of a uniform strain. An effective Dirac Hamiltonian for nonuniform strain is thus reported, which takes into account all strain-induced effects: changes in the nearest-neighbor hopping parameters, the reciprocal lattice deformation and the true shift of the Dirac point. Pseudomagnetic fields are thus explained by means of position-dependent Dirac cones, whereas complex gauge fields appear as a consequence of a position-dependent Fermi velocity. Also, position-dependent Fermi velocity effects on the spinor wavefunction are considered for interesting cases of deformations such as flexural modes. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:2645 / 2651
页数:7
相关论文
共 50 条
  • [21] Spin-thermoelectric transport in nonuniform strained zigzag graphene nanoribbons
    Ildarabadi, Fereshte
    Farghadan, Rouhollah
    PHYSICAL REVIEW B, 2021, 103 (11)
  • [22] The Effect of the Fermi Velocity on the Conductivity of the Graphene-Superconductive Graphene Junction
    Korol, A. M.
    Litvynchuk, S., I
    Medvid, N., V
    Isai, V. M.
    NANOPHYSICS, NANOMATERIALS, INTERFACE STUDIES, AND APPLICATIONS, NANO2016, 2017, 195 : 383 - 393
  • [23] Berry Curvature Dipole in Strained Graphene: A Fermi Surface Warping Effect
    Battilomo, Raffaele
    Scopigno, Niccolo
    Ortix, Carmine
    PHYSICAL REVIEW LETTERS, 2019, 123 (19)
  • [24] Fermi velocity renormalization and dynamical gap generation in graphene
    Popovici, C.
    Fischer, C. S.
    von Smekal, L.
    PHYSICAL REVIEW B, 2013, 88 (20):
  • [25] Electronic structure of a graphene superlattice with a modulated Fermi velocity
    Lima, Jonas R. F.
    PHYSICS LETTERS A, 2015, 379 (20-21) : 1372 - 1376
  • [26] Bound states in graphene via Fermi velocity modulation
    Ghosh, P.
    Roy, P.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (01):
  • [27] Cavity effects on the Fermi velocity renormalization in a graphene sheet
    Pires, Wagner P.
    Silva, Jeferson Danilo L.
    Braga, Alessandra N.
    Alves, Van Sergio
    Alves, Danilo T.
    Marino, E. C.
    NUCLEAR PHYSICS B, 2018, 932 : 529 - 539
  • [28] Introducing Nonuniform Strain to Graphene Using Dielectric Nanopillars
    Tomori, Hikari
    Kanda, Akinobu
    Goto, Hidenori
    Ootuka, Youiti
    Tsukagoshi, Kazuhito
    Moriyama, Satoshi
    Watanabe, Eiichiro
    Tsuya, Daiju
    APPLIED PHYSICS EXPRESS, 2011, 4 (07)
  • [29] Introducing nonuniform strain to graphene using dielectric nanopillars
    Institute of Physics, Tsukuba Research Center for Interdisciplinary Materials Science , University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
    不详
    不详
    不详
    Appl. Phys. Express, 1882, 7
  • [30] Non-conventional Fermi velocity graphene superlattices
    Escalera Santos, G. J.
    Garcia-Rodriguez, F. J.
    Garcia-Cervantes, H.
    Rodriguez-Vargas, I
    MICRO AND NANOSTRUCTURES, 2022, 164