Sufficient dimension reduction in multivariate regressions with categorical predictors

被引:12
|
作者
Hilafu, Haileab [1 ]
Yin, Xiangrong [1 ]
机构
[1] Univ Georgia, Dept Stat, Athens, GA 30602 USA
基金
美国国家科学基金会;
关键词
Central subspace; Dimension reduction; Projective resampling; Sliced inverse regression; Variable selection; SLICED INVERSE REGRESSION; MOMENT;
D O I
10.1016/j.csda.2013.02.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we present a novel sufficient dimension reduction method for multivariate regressions with categorical predictors. We adopt ideas from a previous work by Chiaromonte et al. (2002) who proposed sufficient dimension reduction in regressions with categorical predictors and the work by Li et al. (2008) who proposed the projective-resampling idea to multivariate response problems. In addition, we incorporate a variable selection procedure. Simulation studies show the efficacy of our method. We present a real data analysis through our proposed method to discover new association between personal characteristics and dietary factors which influence plasma beta-carotene and retinol levels in human serum. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:139 / 147
页数:9
相关论文
共 50 条
  • [41] Multivariate seeded dimension reduction
    Jae Keun Yoo
    Yunju Im
    [J]. Journal of the Korean Statistical Society, 2014, 43 : 559 - 566
  • [42] Multivariate seeded dimension reduction
    Yoo, Jae Keun
    Im, Yunju
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2014, 43 (04) : 559 - 566
  • [43] EFFICIENT ESTIMATION IN SUFFICIENT DIMENSION REDUCTION
    Ma, Yanyuan
    Zhu, Liping
    [J]. ANNALS OF STATISTICS, 2013, 41 (01): : 250 - 268
  • [44] A unified approach to sufficient dimension reduction
    Xue, Yuan
    Wang, Qin
    Yin, Xiangrong
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2018, 197 : 168 - 179
  • [45] Sufficient dimension reduction for compositional data
    Tomassi, Diego
    Forzani, Liliana
    Duarte, Sabrina
    Pfeiffer, Ruth M.
    [J]. BIOSTATISTICS, 2021, 22 (04) : 687 - 705
  • [46] SUFFICIENT DIMENSION REDUCTION FOR LONGITUDINAL DATA
    Bi, Xuan
    Qu, Annie
    [J]. STATISTICA SINICA, 2015, 25 (02) : 787 - 807
  • [47] Diagnostic studies in sufficient dimension reduction
    Chen, Xin
    Cook, R. Dennis
    Zou, Changliang
    [J]. BIOMETRIKA, 2015, 102 (03) : 545 - 558
  • [48] Sufficient dimension reduction with additional information
    Hung, Hung
    Liu, Chih-Yen
    Lu, Henry Horng-Shing
    [J]. BIOSTATISTICS, 2016, 17 (03) : 405 - 421
  • [49] On hierarchical clustering in sufficient dimension reduction
    Yoo, Chaeyeon
    Yoo, Younju
    Um, Hye Yeon
    Yoo, Jae Keun
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2020, 27 (04) : 431 - 443
  • [50] Sparse sufficient dimension reduction with heteroscedasticity
    Cheng, Haoyang
    Cui, Wenquan
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2022, 20 (01)