Ensemble Inequivalence in the Spherical Spin Glass Model with Nonlinear Interactions

被引:8
|
作者
Murata, Yuma [1 ]
Nishimori, Hidetoshi [1 ]
机构
[1] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan
关键词
ensemble inequivalence; long-range interacting systems; classical spin systems; disordered systems; spin glasses; phase diagrams; PHASE-TRANSITIONS; SYSTEMS;
D O I
10.1143/JPSJ.81.114008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the ensemble inequivalence of the spherical spin glass model with nonlinear interactions of polynomial order p. This model is solved exactly for arbitrary p and is shown to have first-order phase transitions between the paramagnetic and spin glass or ferromagnetic phases for p >= 5. In the parameter region around the first-order transitions, the solutions give different results depending on the ensemble used for the analysis. In particular, we observe that the microcanonical specific heat can be negative and the phase may not be uniquely determined by the temperature.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Nonequilibrium ensemble inequivalence and large deviations of the density in the ABC model
    Cohen, O.
    Mukamel, D.
    PHYSICAL REVIEW E, 2014, 90 (01):
  • [32] Probing chaos in the spherical p-spin glass model
    Correale, Lorenzo
    Polkovnikov, Anatoli
    Schiro, Marco
    Silva, Alessandro
    SCIPOST PHYSICS, 2023, 15 (05):
  • [33] FULL DYNAMICAL SOLUTION FOR A SPHERICAL SPIN-GLASS MODEL
    CUGLIANDOLO, LF
    DEAN, DS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (15): : 4213 - 4234
  • [34] FREE-ENERGIES OF THE SPHERICAL MODEL OF A SPIN-GLASS
    NEMOTO, K
    TAKAYAMA, H
    SOLID STATE COMMUNICATIONS, 1984, 52 (12) : 1003 - 1006
  • [35] Slow interaction dynamics in the spherical spin-glass model
    Nogueira, E
    Fontanari, JF
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 329 (3-4) : 365 - 370
  • [36] Spin-glass model with uniform biquadratic interactions
    daCosta, FA
    Nobre, F
    Yokoi, CSO
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (07): : 2317 - 2328
  • [37] Ensemble inequivalence and Maxwell construction in the self-gravitating ring model
    Rocha Filho, T. M.
    Silvestre, C. H.
    Amato, M. A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 59 : 190 - 196
  • [38] Long-Range Correlations and Ensemble Inequivalence in a Generalized ABC Model
    Lederhendler, A.
    Mukamel, D.
    PHYSICAL REVIEW LETTERS, 2010, 105 (15)
  • [39] Complete analysis of ensemble inequivalence in the Blume-Emery-Griffiths model
    Hovhannisyan, V. V.
    Ananikian, N. S.
    Campa, A.
    Ruffo, S.
    PHYSICAL REVIEW E, 2017, 96 (06)
  • [40] Temperature shifts in the quantum spherical p-spin model of glass
    Buziello, G.
    Gazeeva, E. V.
    Saburova, R. V.
    Khaibutdinova, I. R.
    Chugunova, G. P.
    PHYSICS OF METALS AND METALLOGRAPHY, 2006, 101 (02): : 109 - 113