A note on specialization L-preorder of L-topological spaces, L-fuzzifying topological spaces, and L-fuzzy topological spaces

被引:13
|
作者
Yao, Wei [1 ,2 ]
Shi, Fu-Gui [2 ]
机构
[1] Hebei Univ Sci & Technol, Dept Math, Shijiazhuang 050054, Hebei, Peoples R China
[2] Beijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
关键词
topology; category theory; spatial frame; L-preorder; L-topology; L-fuzzifying topology; L-fuzzy topology; Galois correspondence;
D O I
10.1016/j.fss.2008.03.023
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It is shown that, for any spatial frame L (i.e., L is a complete lattice generated by the set of all prime elements), both the specialization L-preorder of L-topological spaces introduced by Lai and Zhang [Fuzzy preorder and fuzzy topology, Fuzzy Sets and Systems 157 (2006) 1865-1885] and that of L-fuzzifying topological spaces introduced by Fang and Qiu [Fuzzy orders and fuzzifying topologies, Internat. J. Approx. Reasoning 48 (2008) 98-109] are special cases of that of L-fuzzy topological spaces introduced by Fang [l-fuzzy Alexandrov topologies and specialization orders, Fuzzy Sets and Systems 158 (2007) 2359-2374]. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2586 / 2595
页数:10
相关论文
共 50 条
  • [21] Invertibility in L-Topological Spaces
    Jose, Anjaly
    Mathew, Sunil C.
    FUZZY INFORMATION AND ENGINEERING, 2014, 6 (01) : 41 - 57
  • [22] METACOMPACTNESS IN L-TOPOLOGICAL SPACES
    John, S. Jacob
    Baiju, T.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2008, 5 (03): : 71 - 79
  • [23] θ-Compactness in L-topological spaces
    Hanafy, I. M.
    CHAOS SOLITONS & FRACTALS, 2009, 42 (05) : 3006 - 3012
  • [24] Moore-Smith Convergence in L-Fuzzifying Topological Spaces
    Wei YAO Ling Xia LU College of Mathematics and Information Science Shaanxi Normal University Shaanxi P R China College of Science Hebei University of Science and Technology Hebei P R China School of Mathematics and Science Shijiazhuang University of Economics Hebei P R China
    数学研究与评论, 2011, 31 (05) : 770 - 780
  • [25] Moore-Smith Convergence in L-Fuzzifying Topological Spaces
    Wei YAO1
    2. College of Science
    3. School of Mathematics and Science
    Journal of Mathematical Research with Applications, 2011, (05) : 770 - 780
  • [26] Continuity of linear operators in L-fuzzifying topological vector spaces
    Yan, Cong-hua
    Fang, Jin-xuan
    FUZZY SETS AND SYSTEMS, 2007, 158 (09) : 937 - 948
  • [27] Generalized Fuzzy Compactness in L-Topological Spaces
    Xu, Zhen-Guo
    Li, Hong-Yan
    Yun, Zi-Qiu
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2010, 33 (03) : 457 - 468
  • [28] L-fuzzifying preproximity spaces and L-fuzzifying preuniform spaces
    Abd-Allah, M. Azab
    APPLIED MATHEMATICS LETTERS, 2010, 23 (09) : 1087 - 1094
  • [29] Completely induced L-fuzzy topological spaces
    Aygün, H
    Warner, MW
    Kudri, SRT
    FUZZY SETS AND SYSTEMS, 1999, 103 (03) : 513 - 523
  • [30] ON THE SUM OF L-FUZZY TOPOLOGICAL-SPACES
    GUANGWU, M
    FUZZY SETS AND SYSTEMS, 1993, 59 (01) : 65 - 77