Simulations of indentation-induced phase transformations in crystalline and amorphous silicon

被引:16
|
作者
Ivashchenko, V. I. [1 ]
Turchi, P. E. A. [2 ]
Shevchenko, V. I. [1 ]
机构
[1] Natl Acad Sci Ukraine, Inst Problems Mat Sci, UA-03142 Kiev, Ukraine
[2] Natl Lawrence Livermore Lab L 352, Livermore, CA 94551 USA
来源
PHYSICAL REVIEW B | 2008年 / 78卷 / 03期
关键词
D O I
10.1103/PhysRevB.78.035205
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The pressure- and indentation-induced phase transformations in crystalline (cd) and amorphous (a) silicon are studied by using molecular dynamics simulations based on the modified Tersoff potential. The sp(3)s(star) tight-binding scheme is employed to gain insight into the origin of the change in conductivity during nanoindentation. The Gibbs free energy calculations predict the following pressure-induced phase transitions: cd-Si ->beta-tin Si(beta-Si) (11.4 GPa); cd-Si -> high density amorphous phase (HDA) (22.5 GPa); a-Si ->beta-Si (2.5 GPa); a-Si -> HDA (8.4 GPa). Simulations of nanoindentation of crystalline silicon reveal discontinuities in the load-displacement curves. In the loading curves of the cd-Si (100) substrate, the pop-in is assigned to the appearance of the beta-tin Si phase. During unloading, the pop-out is due to the formation of a low-density amorphous phase a-Si. The a-Si -> HDA transformation takes place during nanoindentation of a-Si in loading regime. Upon unloading the a-Si phase is preserved. The structural transformations in cd-Si and a-Si during nanoindentation are treated in terms of triaxial and uniaxial compressions of the respective bulk samples. A change in conductivity from semiconducting to metallic during nanoindentation of the cd-Si (100) and a-Si slabs is explained in terms of a transformation of the localized electronic states in the band gap region. The results are compared to those of available theoretical models and experiments.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [21] Thermal evolution of the indentation-induced phases of silicon
    Wong, S.
    Johnson, B. C.
    Haberl, B.
    Mujica, A.
    McCallum, J. C.
    Williams, J. S.
    Bradby, J. E.
    JOURNAL OF APPLIED PHYSICS, 2019, 126 (10)
  • [22] Mechanical modelling of indentation-induced densification in amorphous silica
    Kermouche, G.
    Barthel, E.
    Vandembroucq, D.
    Dubujet, Ph.
    ACTA MATERIALIA, 2008, 56 (13) : 3222 - 3228
  • [23] Investigations of the indentation-induced crystallographic phase changes in silicon using Raman spectroscopy
    Chaudhri, M. M.
    Khayyat, M. M. O.
    Hasko, D. G.
    SURFACE REVIEW AND LETTERS, 2007, 14 (04) : 719 - 723
  • [24] Phase angle in indentation-induced delamination with buckling
    Huang, B
    Zhao, MH
    Gao, CF
    Zhang, TY
    SCRIPTA MATERIALIA, 2004, 50 (05) : 607 - 611
  • [25] Indentation-induced martensitic transformation in SMAs: Insights from phase-field simulations
    Rezaee-Hajidehi, Mohsen
    Tuma, Karel
    Stupkiewicz, Stanislaw
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2023, 245
  • [26] CHEMICAL ENVIRONMENT EFFECT ON INDENTATION-INDUCED FRACTURE OF SILICON
    MASUDAJINDO, K
    MAEDA, K
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1994, 176 (1-2): : 225 - 230
  • [27] Fatigue and debris generation at indentation-induced cracks in silicon
    Bhowmick, Sanjit
    Cha, Hyunmin
    Jung, Yeon-Gil
    Lawn, Brian R.
    ACTA MATERIALIA, 2009, 57 (02) : 582 - 589
  • [28] INFLUENCE OF MICROSTRUCTURE ON THE INDENTATION-INDUCED DAMAGE IN SILICON CARBIDE
    Swab, Jeffrey J.
    Wereszczak, Andrew A.
    Pritchett, Justin
    Johanns, Kurt
    ADVANCES IN CERAMIC ARMOR II, 2007, 27 (07): : 251 - +
  • [29] Dynamics of laser induced phase transformations in amorphous silicon
    Borusik, O
    Cerny, R
    Prikryl, P
    ElKader, KM
    Ulrych, I
    Chvoj, Z
    Chab, V
    APPLIED SURFACE SCIENCE, 1997, 109 : 317 - 321
  • [30] Cross-sectional TEM studies of indentation-induced phase transformations in Si: Indenter angle effects
    Wen, SQ
    Bentley, J
    Jang, JI
    Pharr, GM
    FUNDAMENTALS OF NANOINDENTATION AND NANOTRIBOLOGY III, 2005, 841 : 279 - 284