Constructive Negation and Paraconsistency

被引:0
|
作者
Beziau, Jean-Yves [1 ,2 ]
机构
[1] Univ Fed Rio de Janeiro, Dept Philosophy, Rio De Janeiro, Brazil
[2] Brazilian Res Council CNPq, Rio De Janeiro, Brazil
关键词
D O I
10.1007/s11225-012-9409-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:653 / 657
页数:5
相关论文
共 50 条
  • [31] A necessary condition for Constructive Negation in Constraint Logic Programming
    Dovier, A
    Pontelli, E
    Rossi, G
    INFORMATION PROCESSING LETTERS, 2000, 74 (3-4) : 147 - 156
  • [32] Forms, objects and negation according to Granger A constructive interpretation
    Schang, Fabien
    PHILOSOPHIQUES, 2020, 47 (01): : 3 - 33
  • [33] On termination of general logic programs WRT constructive negation
    Marchiori, E
    JOURNAL OF LOGIC PROGRAMMING, 1996, 26 (01): : 69 - 89
  • [34] Constructive negation under the well-founded semantics
    Yuan-Ze Univ, Taiwan
    J Logic Program, 3 (295-330):
  • [35] Constructive Negation of Arithmetic Constraints Using Dataflow Graphs
    Cleary J.G.
    Constraints, 1997, 2 (2) : 131 - 162
  • [36] Constructive negation under the well-founded semantics
    Liu, JY
    Adams, L
    Chen, WD
    JOURNAL OF LOGIC PROGRAMMING, 1999, 38 (03): : 295 - 330
  • [37] TOPOS BASED SEMANTIC FOR CONSTRUCTIVE LOGIC WITH STRONG NEGATION
    KLUNDER, B
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1992, 38 (5-6): : 509 - 519
  • [38] PARACONSISTENCY
    URBAS, I
    STUDIES IN SOVIET THOUGHT, 1990, 39 (3-4): : 343 - 354
  • [39] Constructive logic with strong negation is a substructural logic. I
    Spinks M.
    Veroff R.
    Studia Logica, 2008, 88 (3) : 325 - 348
  • [40] A space efficient implementation of a tableau calculus for a logic with a constructive negation
    Avellone, A
    Fiorentini, C
    Fiorino, G
    Moscato, U
    COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2004, 3210 : 488 - 502