High-pressure Raman spectroscopy study of wurtzite ZnO

被引:496
|
作者
Decremps, F
Pellicer-Porres, J
Saitta, AM
Chervin, JC
Polian, A
机构
[1] Univ Paris 06, CNRS, UMR 7602, F-75252 Paris 05, France
[2] Univ Valencia, Inst Ciencia Mat, Dept Fis Aplicada, E-46100 Valencia, Spain
来源
PHYSICAL REVIEW B | 2002年 / 65卷 / 09期
关键词
D O I
10.1103/PhysRevB.65.092101
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The high-pressure behavior of optical phonons in wurtzite zinc oxide (w-ZnO) is studied using room-temperature Raman spectroscopy and ab initio calculations based on a plane-wave pseudopotential method within the density-functional theory. The pressure dependence of the zone-center phonons (E-2, A(1), and E-1) was measured for the wurtzite structure up to the hexagonal-cubic transition near 9 GPa. Above this pressure low no active mode was observed. The only negative Gruneisen parameter is that of the E-2(low) mode. E-1(LO) and (TO) frequencies increase with increasing pressure. The corresponding perpendicular tensor component of the Born's transverse dynamic charge e(T)* is experimentally found to increase under compression like eT*(P) = 2.02+6.4x10(-3) P, whereas calculations give e(T)*(P)=2.09-2.5x10(-3) P (in units of the elementary charge e, P in GPa). In both cases, the pressure variation is small, indicating a weak dependence of the bond ionicity with pressure. The pressure dependence of the optical mode energies is also compared with the prediction of a model that treats the wurtzite-to-rocksalt transition as an homogeneous shear strain. There is no evidence of an anomaly in the E-2 and A(1) mode behaviors before the phase transition.
引用
收藏
页码:921011 / 921014
页数:4
相关论文
共 50 条
  • [21] In situ high-pressure study of ammonia borane by Raman and IR spectroscopy
    Xie, Shuntai
    Song, Yang
    Liu, Zhenxian
    CANADIAN JOURNAL OF CHEMISTRY, 2009, 87 (09) : 1235 - 1247
  • [22] High-pressure Raman spectroscopy study of α and γ polymorphs of AlH3
    Tkacz, Marek
    Palasyuk, Taras
    Graetz, Jason
    Saxena, Surendra
    JOURNAL OF RAMAN SPECTROSCOPY, 2008, 39 (07) : 922 - 927
  • [23] High-pressure Raman study of Terephthalonitrile
    Li, DongFei
    Zhang, KeWei
    Song, MingXing
    Zhai, NaiCui
    Sun, ChengLin
    Li, HaiBo
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2017, 173 : 376 - 382
  • [24] High-pressure Raman study of anthracene
    Zhao, L
    Baer, BJ
    Chronister, EL
    JOURNAL OF PHYSICAL CHEMISTRY A, 1999, 103 (12): : 1728 - 1733
  • [25] High-pressure coesite inclusions in diamond: Raman spectroscopy
    Fursenko, BA
    Goryainov, SV
    Sobolev, NV
    DOKLADY EARTH SCIENCES, 2001, 379 (06) : 749 - 752
  • [26] RAMAN-SPECTROSCOPY OF POTASSIUM SELENATE AT HIGH-PRESSURE
    YENICE, KM
    LEE, SA
    JOURNAL OF RAMAN SPECTROSCOPY, 1992, 23 (05) : 299 - 302
  • [27] High-pressure Raman spectroscopy of phase change materials
    Hsieh, Wen-Pin
    Zalden, Peter
    Wuttig, Matthias
    Lindenberg, Aaron M.
    Mao, Wendy L.
    APPLIED PHYSICS LETTERS, 2013, 103 (19)
  • [28] High-Pressure Raman Spectroscopy of Tris(hydroxymethyl)aminomethane
    Emmons, Erik D.
    Fallas, Juan C.
    Kamisetty, Vamsi K.
    Chien, Wen-Ming
    Covington, Aaron M.
    Chellappa, Raja S.
    Gramsch, Stephen A.
    Hemley, Russell J.
    Chandra, Dhanesh
    JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (17): : 5649 - 5656
  • [29] Rotonic Raman spectroscopy in high-pressure solid parahydrogen
    Moraldi, Massimo
    PHYSICAL REVIEW B, 2007, 76 (18):
  • [30] High-Pressure Raman Spectroscopy of Transition Metal Cyanides
    Moritomo, Yutaka
    Matsuda, Tomoyuki
    Fuchikawa, Ryota
    Abe, Yuta
    Kamioka, Hayato
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2011, 80 (02)