A Note on Constrained Multi-Objective Optimization Benchmark Problems

被引:0
|
作者
Tanabe, Ryoji [1 ]
Oyama, Akira [2 ]
机构
[1] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
[2] Japan Aerosp Explorat Agcy, Inst Space & Astronaut Sci, Tokyo, Japan
关键词
DESIGN OPTIMIZATION; ALGORITHM;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We investigate the properties of widely used constrained multi-objective optimization benchmark problems. A number of Multi-Objective Evolutionary Algorithms (MOEAs) for Constrained Multi-Objective Optimization Problems (CMOPs) have been proposed in the past few years. The C-DTLZ functions and Real-World-Like Problems (RWLPs) have frequently been used for evaluating the performance of MOEAs on CMOPs. In this paper, however, we show that the C-DTLZ functions and widely-used RWLPs have some unnatural problem features. The experimental results show that an MOEA without any Constraint Handling Techniques (CHTs) can successfully find well-approximated nondominated feasible solutions on the C1-DTLZ1, C1-DTLZ3, and C2-DTLZ2 functions. It is widely believed that RWLPs are MOEA-hard problems, and finding the feasible solutions on them is a very hard task. However, we show that the MOEA without any CHTs can find feasible solutions on widely-used RWLPs such as the speed reducer design problem, the two-bar truss design problem, and the water problem. Also, it is seldom that the infeasible solution simultaneously violates multiple constraints in the RWLPs. Due to the above reasons, we conclude that constrained multi-objective optimization benchmark problems need a careful reconsideration.
引用
收藏
页码:1127 / 1134
页数:8
相关论文
共 50 条
  • [21] An Improved Differential Evolution for Constrained Multi-objective Optimization Problems
    Song, Erping
    Li, Hecheng
    Wanma, Cuo
    2020 16TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2020), 2020, : 269 - 273
  • [22] MOGOA algorithm for constrained and unconstrained multi-objective optimization problems
    Tharwat, Alaa
    Houssein, Essam H.
    Ahmed, Mohammed M.
    Hassanien, Aboul Ella
    Gabel, Thomas
    APPLIED INTELLIGENCE, 2018, 48 (08) : 2268 - 2283
  • [23] Solving Constrained Multi-objective Optimization Problems with Evolutionary Algorithms
    Snyman, Frikkie
    Helbig, Marde
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2017, PT II, 2017, 10386 : 57 - 66
  • [24] MOGOA algorithm for constrained and unconstrained multi-objective optimization problems
    Alaa Tharwat
    Essam H. Houssein
    Mohammed M. Ahmed
    Aboul Ella Hassanien
    Thomas Gabel
    Applied Intelligence, 2018, 48 : 2268 - 2283
  • [25] A novel multi-objective PSO algorithm for constrained optimization problems
    Wei, Jingxuan
    Wang, Yuping
    SIMULATED EVOLUTION AND LEARNING, PROCEEDINGS, 2006, 4247 : 174 - 180
  • [26] The Hypervolume Newton Method for Constrained Multi-Objective Optimization Problems
    Wang, Hao
    Emmerich, Michael
    Deutz, Andre
    Adrian Sosa Hernandez, Victor
    Schutze, Oliver
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2023, 28 (01)
  • [27] A benchmark generator for online dynamic single-objective and multi-objective optimization problems
    Xiang, Xiaoshu
    Tian, Ye
    Cheng, Ran
    Zhang, Xingyi
    Yang, Shengxiang
    Jin, Yaochu
    INFORMATION SCIENCES, 2022, 613 : 591 - 608
  • [28] A Benchmark-Suite of real-World constrained multi-objective optimization problems and some baseline results
    Kumar, Abhishek
    Wu, Guohua
    Ali, Mostafa Z.
    Luo, Qizhang
    Mallipeddi, Rammohan
    Suganthan, Ponnuthurai Nagaratnam
    Das, Swagatam
    SWARM AND EVOLUTIONARY COMPUTATION, 2021, 67
  • [29] A dynamic tri-population multi-objective evolutionary algorithm for constrained multi-objective optimization problems
    Yang, Yongkuan
    Yan, Bing
    Kong, Xiangsong
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (04) : 2791 - 2806
  • [30] A Multi-Fidelity Bayesian Optimization Approach for Constrained Multi-Objective Optimization Problems
    Lin, Quan
    Hu, Jiexiang
    Zhou, Qi
    Shu, Leshi
    Zhang, Anfu
    JOURNAL OF MECHANICAL DESIGN, 2024, 146 (07)