A skein action of the symmetric group on noncrossing partitions

被引:8
|
作者
Rhoades, Brendon [1 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Cyclic sieving; Noncrossing partition; Promotion; Rotation; Skein relation; Symmetric group; INCREASING TABLEAUX; NUMBERS;
D O I
10.1007/s10801-016-0701-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce and study a new action of the symmetric group on the vector space spanned by noncrossing partitions of in which the adjacent transpositions act on noncrossing partitions by means of skein relations. We characterize the isomorphism type of the resulting module and use it to obtain new representation-theoretic proofs of cyclic sieving results due to Reiner-Stanton-White and Pechenik for the action of rotation on various classes of noncrossing partitions and the action of K-promotion on two-row rectangular increasing tableaux. Our skein relations generalize the Kauffman bracket (or Ptolemy relation) and can be used to resolve any set partition as a linear combination of noncrossing partitions in a -equivariant way.
引用
收藏
页码:81 / 127
页数:47
相关论文
共 50 条