A skein action of the symmetric group on noncrossing partitions

被引:8
|
作者
Rhoades, Brendon [1 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Cyclic sieving; Noncrossing partition; Promotion; Rotation; Skein relation; Symmetric group; INCREASING TABLEAUX; NUMBERS;
D O I
10.1007/s10801-016-0701-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce and study a new action of the symmetric group on the vector space spanned by noncrossing partitions of in which the adjacent transpositions act on noncrossing partitions by means of skein relations. We characterize the isomorphism type of the resulting module and use it to obtain new representation-theoretic proofs of cyclic sieving results due to Reiner-Stanton-White and Pechenik for the action of rotation on various classes of noncrossing partitions and the action of K-promotion on two-row rectangular increasing tableaux. Our skein relations generalize the Kauffman bracket (or Ptolemy relation) and can be used to resolve any set partition as a linear combination of noncrossing partitions in a -equivariant way.
引用
收藏
页码:81 / 127
页数:47
相关论文
共 50 条
  • [1] A skein action of the symmetric group on noncrossing partitions
    Brendon Rhoades
    Journal of Algebraic Combinatorics, 2017, 45 : 81 - 127
  • [2] A group action on noncrossing partitions
    Sun, Hua
    DISCRETE MATHEMATICS, 2013, 313 (20) : 2124 - 2126
  • [3] An embedding of the skein action on set partitions into the skein action on matchings
    Kim, Jesse
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (01):
  • [4] Noncrossing partitions for the group Dn
    Athanasiadis, CA
    Reiner, V
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2004, 18 (02) : 397 - 417
  • [5] Enumeration of bilaterally symmetric 3-noncrossing partitions
    Xin, Guoce
    Zhang, Terence Y. J.
    DISCRETE MATHEMATICS, 2009, 309 (08) : 2497 - 2509
  • [6] Noncrossing partitions
    Simion, R
    DISCRETE MATHEMATICS, 2000, 217 (1-3) : 367 - 409
  • [7] On trees and noncrossing partitions
    Klazar, M
    DISCRETE APPLIED MATHEMATICS, 1998, 82 (1-3) : 263 - 269
  • [8] Pairs of noncrossing free Dyck paths and noncrossing partitions
    Chen, William Y. C.
    Pang, Sabrina X. M.
    Qu, Ellen X. Y.
    Stanley, Richard P.
    DISCRETE MATHEMATICS, 2009, 309 (09) : 2834 - 2838
  • [9] Noncrossing partitions, toggles, and homomesies
    Einstein, David
    Farber, Miriam
    Gunawan, Emily
    Joseph, Michael
    Macauley, Matthew
    Propp, James
    Rubinstein-Salzedo, Simon
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (03):
  • [10] A note on enumeration of noncrossing partitions
    Weng, Weiming
    Liu, Bolian
    ARS COMBINATORIA, 2012, 103 : 377 - 384