Surjective isometries between function spaces

被引:8
|
作者
Miura, Takeshi [1 ]
机构
[1] Niigata Univ, Fac Sci, Dept Math, Niigata 9502181, Japan
来源
关键词
commutative Banach algebra; function algebra; function space; isometry; isomorphism; uniform algebra; REAL-LINEAR ISOMETRIES; SUBSPACES;
D O I
10.1090/conm/645/12926
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a compact Hausdorff space. We denote by C(X) the Banach space of all continuous complex valued functions on X with respect to the supremum norm. A function space A on X is a normed linear subspace of C(X) that contains the constant function 1 and separates the points of X. We give a necessary and sufficient condition for a surjective distance preserving map between two function spaces be represented by a weighted composition operator.
引用
收藏
页码:231 / 239
页数:9
相关论文
共 50 条
  • [31] Erratum to: Surjective isometries on spaces of vector valued continuous and Lipschitz functions
    Fernanda Botelho
    [J]. Positivity, 2016, 20 : 757 - 759
  • [32] Geometric Invariants of Surjective Isometries between Unit Spheres
    Campos-Jimenez, Almudena
    Javier Garcia-Pacheco, Francisco
    [J]. MATHEMATICS, 2021, 9 (18)
  • [33] Surjective isometries of metric geometries
    Beardon, A. F.
    Minda, D.
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (04): : 828 - 839
  • [34] Nice operators and surjective isometries
    Navarro-Pascual, J. C.
    Navarro, M. A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 426 (02) : 1130 - 1142
  • [35] Surjective isometries between unitary sets of unital JB*-algebras
    Cueto-Avellaneda, Maria
    Enami, Yuta
    Hirota, Daisuke
    Miura, Takeshi
    Peralta, Antonio M.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 643 : 39 - 79
  • [36] ON 2-LOCAL NONLINEAR SURJECTIVE ISOMETRIES ON NORMED SPACES AND C*-ALGEBRAS
    Mori, Michiya
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (06) : 2477 - 2485
  • [37] On stability of non-surjective (ε, s)-isometries of uniformly convex Banach spaces
    Sun, Yuqi
    Wang, Xiaoyu
    Dong, Jing
    Lv, Jiahong
    [J]. AIMS MATHEMATICS, 2024, 9 (08): : 22500 - 22512
  • [38] Local isometries of function spaces
    Krzysztof Jarosz
    T.S.S.R.K. Rao
    [J]. Mathematische Zeitschrift, 2003, 243 : 449 - 469
  • [39] On characterizations of isometries on function spaces
    Li SongYing
    Ruan YingBin
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (04): : 620 - 631
  • [40] On characterizations of isometries on function spaces
    LI SongYing~(1+) RUAN YingBin~2 1 Department of Mathematics
    University of California
    Irvine
    CA 92697
    USA
    2 School of Mathematics and Computer Science
    Fujian Normal University
    Fuzhou 350007
    China
    [J]. Science China Mathematics, 2008, (04) : 620 - 631