The geometry of symplectic pairs

被引:28
|
作者
Bande, G [1 ]
Kotschick, D
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, Via Osped 72, I-09129 Cagliari, Italy
[2] Univ Munich, Inst Math, D-80333 Munich, Germany
关键词
D O I
10.1090/S0002-9947-05-03808-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the geometry of manifolds carrying symplectic pairs consisting of two closed 2-forms of constant ranks, whose kernel foliations are complementary. Using a variation of the construction of Boothby and Wang we build contact-symplectic and contact pairs from symplectic pairs.
引用
收藏
页码:1643 / 1655
页数:13
相关论文
共 50 条
  • [31] The quadratic sum problem for symplectic pairs
    Pazzis, Clement de Seguins
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 683 : 151 - 179
  • [32] Stability theorems for symplectic and contact pairs
    Bande, G
    Ghiggini, P
    Kotschick, D
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (68) : 3673 - 3688
  • [33] Local rigidity and nonrigidity of symplectic pairs
    Calvino-Louzao, E.
    Garcia-Rio, E.
    Vazquez-Abal, M. E.
    Vazquez-Lorenzo, R.
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2012, 41 (02) : 241 - 252
  • [34] Local rigidity and nonrigidity of symplectic pairs
    E. Calviño-Louzao
    E. García-Río
    M. E. Vázquez-Abal
    R. Vázquez-Lorenzo
    Annals of Global Analysis and Geometry, 2012, 41 : 241 - 252
  • [35] Special geometry and symplectic transformations
    deWit, B
    VanProeyen, A
    NUCLEAR PHYSICS B, 1996, : 196 - 206
  • [36] An extension theorem in symplectic geometry
    Schlenk, F
    MANUSCRIPTA MATHEMATICA, 2002, 109 (03) : 329 - 348
  • [37] Symplectic geometry of constrained optimization
    Andrey A. Agrachev
    Ivan Yu. Beschastnyi
    Regular and Chaotic Dynamics, 2017, 22 : 750 - 770
  • [38] Symplectic Pairs and Intrinsically Harmonic Forms
    Bande, Gianluca
    MATHEMATICS, 2023, 11 (13)
  • [39] Almost complex structures for symplectic pairs
    Her, Hai-Long
    TOPOLOGY AND ITS APPLICATIONS, 2018, 235 : 35 - 42
  • [40] Symplectic geometry on quantum plane
    Albeverio, S
    Fei, SM
    MODERN PHYSICS LETTERS A, 1999, 14 (8-9) : 549 - 557