A Preliminary Study of a new Multi-objective Optimization Algorithm

被引:0
|
作者
Lattarulo, Valerio [1 ]
Parks, Geoffrey T. [1 ]
机构
[1] Univ Cambridge, Dept Engn, Engn Design Ctr, Cambridge CB2 1PZ, England
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a preliminary study which describes and evaluates a multi-objective (MO) version of a recently created single objective (SO) optimization algorithm called the "Alliance Algorithm" (AA). The algorithm is based on the metaphorical idea that several tribes, with certain skills and resource needs, try to conquer an environment for their survival and to ally together to improve the likelihood of conquest. The AA has given promising results in several fields to which has been applied, thus the development of a MO variant (MOAA) is a natural extension. Here the MOAA's performance is compared with two well-known MO algorithms: NSGA-II and SPEA-2. The performance measures chosen for this study are the convergence and diversity metrics. The benchmark functions chosen for the comparison are from the ZDT and OKA families and the main classical MO problems. The results show that the three algorithms have similar overall performance. Thus, it is not possible to identify a best algorithm for all the problems; the three algorithms show a certain complementarity because they offer superior performance for different classes of problems.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Weian Guo
    Ming Chen
    Lei Wang
    Qidi Wu
    Soft Computing, 2017, 21 : 5883 - 5891
  • [22] Hybrid Multi-Objective Genetic Algorithm for Multi-Objective Optimization Problems
    Zhang, Song
    Wang, Hongfeng
    Yang, Di
    Huang, Min
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1970 - 1974
  • [23] The new model of parallel genetic algorithm in multi-objective optimization problems - Divided range multi-objective genetic algorithm
    Hiroyasu, T
    Miki, M
    Watanabe, S
    PROCEEDINGS OF THE 2000 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2000, : 333 - 340
  • [24] A Decentralized Multi-objective Optimization Algorithm
    Blondin, Maude J.
    Hale, Matthew
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 189 (02) : 458 - 485
  • [25] Pruning Algorithm for Multi-objective Optimization
    Sudeng, Sufian
    Wattanapongsakorn, Naruemon
    2013 10TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE), 2013, : 70 - 75
  • [26] Novel multi-objective optimization algorithm
    Zeng, Jie
    Nie, Wei
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2014, 25 (04) : 697 - 710
  • [27] An interval algorithm for multi-objective optimization
    Ruetsch, GR
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2005, 30 (01) : 27 - 37
  • [28] Multi-objective Flower Algorithm for Optimization
    Yang, Xin-She
    Karamanoglu, Mehmet
    He, Xingshi
    2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2013, 18 : 861 - 868
  • [29] MULTI-OBJECTIVE PERFORMANCE DESIGN OF INJECTION MOLDING MACHINE VIA A NEW MULTI-OBJECTIVE OPTIMIZATION ALGORITHM
    Ding, Li-ping
    Tan, Jian-rong
    Wei, Zhe
    Chen, Wen-liang
    Gao, Zhan
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2011, 7 (7A): : 3939 - 3949
  • [30] A Decentralized Multi-objective Optimization Algorithm
    Maude J. Blondin
    Matthew Hale
    Journal of Optimization Theory and Applications, 2021, 189 : 458 - 485