A Preliminary Study of a new Multi-objective Optimization Algorithm

被引:0
|
作者
Lattarulo, Valerio [1 ]
Parks, Geoffrey T. [1 ]
机构
[1] Univ Cambridge, Dept Engn, Engn Design Ctr, Cambridge CB2 1PZ, England
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a preliminary study which describes and evaluates a multi-objective (MO) version of a recently created single objective (SO) optimization algorithm called the "Alliance Algorithm" (AA). The algorithm is based on the metaphorical idea that several tribes, with certain skills and resource needs, try to conquer an environment for their survival and to ally together to improve the likelihood of conquest. The AA has given promising results in several fields to which has been applied, thus the development of a MO variant (MOAA) is a natural extension. Here the MOAA's performance is compared with two well-known MO algorithms: NSGA-II and SPEA-2. The performance measures chosen for this study are the convergence and diversity metrics. The benchmark functions chosen for the comparison are from the ZDT and OKA families and the main classical MO problems. The results show that the three algorithms have similar overall performance. Thus, it is not possible to identify a best algorithm for all the problems; the three algorithms show a certain complementarity because they offer superior performance for different classes of problems.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A new hybrid memetic multi-objective optimization algorithm for multi-objective optimization
    Luo, Jianping
    Yang, Yun
    Liu, Qiqi
    Li, Xia
    Chen, Minrong
    Gao, Kaizhou
    INFORMATION SCIENCES, 2018, 448 : 164 - 186
  • [2] Multimodal Multi-objective Optimization: A Preliminary Study
    Liang, J. J.
    Yue, C. T.
    Qu, B. Y.
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 2454 - 2461
  • [3] An new evolutionary multi-objective optimization algorithm
    Mu, SJ
    Su, HY
    Chu, J
    Wang, YX
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 914 - 920
  • [4] Multi-objective interior search algorithm for optimization: A new multi-objective meta-heuristic algorithm
    Torabi, Navid
    Tavakkoli-Moghaddam, Reza
    Najafi, Esmaiel
    Lotfi, Farhad Hosseinzadeh
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 35 (03) : 3307 - 3319
  • [5] Multi-objective go with the winners algorithm:: A preliminary study
    Brizuela, CA
    Gutiérrez, E
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2005, 3410 : 206 - 220
  • [6] A new dynamic multi-objective optimization evolutionary algorithm
    Liu, Chun-An
    Wang, Yuping
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2008, 4 (08): : 2087 - 2096
  • [7] New hybrid algorithm for multi-objective structural optimization
    Samira, El Moumen
    Rachid, Ellaia
    Rajae, Aboulaich
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND SYSTEMS MANAGEMENT (IEEE-IESM 2013), 2013, : 458 - 462
  • [8] A new optimization algorithm to solve multi-objective problems
    Sharifi, Mohammad Reza
    Akbarifard, Saeid
    Qaderi, Kourosh
    Madadi, Mohamad Reza
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [9] A new optimization algorithm to solve multi-objective problems
    Mohammad Reza Sharifi
    Saeid Akbarifard
    Kourosh Qaderi
    Mohamad Reza Madadi
    Scientific Reports, 11
  • [10] A new multi-objective optimization algorithm for separation processes
    Zhou, Zixiang
    Guo, Yandong
    Chen, Songsong
    Cui, Gaijing
    Bao, Aili
    Huo, Feng
    Zhang, Junping
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2025, 213 : 159 - 171