Mapping and prediction of soil organic carbon by an advanced geostatistical technique using remote sensing and terrain data

被引:20
|
作者
Mallik, Santanu [1 ]
Bhowmik, Tridip [1 ]
Mishra, Umesh [1 ]
Paul, Niladri [2 ]
机构
[1] Natl Inst Technol Agartala, Dept Civil Engn, Jirania, Tripura, India
[2] Coll Agr, Dept Soil Sci & Agr Chem, Tripura Lembucherra, Tripura, India
关键词
Soil organic carbon; digital soil mapping; artificial neural network; geostatistical method; remote sensing; empirical Bayesian kriging regression; SPATIAL VARIABILITY; SEMIARID RANGELANDS; NEURAL-NETWORK; MATTER CONTENT; REGRESSION; VARIABLES; TEXTURE; INDEXES; MODELS; REGION;
D O I
10.1080/10106049.2020.1815864
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Prediction and accurate digital soil mapping (DSM) of soil organic carbon (SOC) at a local scale is a key factor for any agro-ecological modelling. This study aims to use remote sensing and terrain derivatives to provide a reliable method for SOC prediction. An advanced geostatistical-based empirical Bayesian Kriging regression (EBKR) method was used and performance was compared with the artificial neural network (ANN) and hybrid ANN, i.e. ANN-OK (ordinary kriging) and ANN-CK (cokriging). The result showed that the hybrid ANN model performs better than ANN, whereas the EBKR method outperforms all other methods with the highestR(2)of 0.936. The DSM map shows that the highest SOC concentration was found in easternmost part of the study area with grass and agricultural land. This work shows the robustness of the EBKR prediction method over other techniques. The study will also aid the policymakers in adopting sustainable land use management.
引用
收藏
页码:2198 / 2214
页数:17
相关论文
共 50 条
  • [21] Soil Organic Carbon Mapping from Remote Sensing: The Effect of Crop Residues
    Dvorakova, Klara
    Shi, Pu
    Limbourg, Quentin
    van Wesemael, Bas
    [J]. REMOTE SENSING, 2020, 12 (12)
  • [22] Soil organic carbon estimation using remote sensing data-driven machine learning
    Chen, Qi
    Wang, Yiting
    Zhu, Xicun
    [J]. PEERJ, 2024, 12
  • [23] Predicting soil organic carbon content in Cyprus using remote sensing and Earth observation data
    Ballabio, Cristiano
    Panagos, Panos
    Montanarella, Luca
    [J]. SECOND INTERNATIONAL CONFERENCE ON REMOTE SENSING AND GEOINFORMATION OF THE ENVIRONMENT (RSCY2014), 2014, 9229
  • [24] Mapping soil organic carbon and clay using remote sensing to predict soil workability for enhanced climate change adaptation
    Paul, S. S.
    Coops, N. C.
    Johnson, M. S.
    Krzic, M.
    Chandna, A.
    Smukler, S. M.
    [J]. GEODERMA, 2020, 363
  • [25] A numerical technique for delineation of soil mapping units using multi-spectral remote sensing data
    Kaur R.
    Bhadra S.K.
    Bhavanarayana M.
    Panda B.C.
    [J]. Journal of the Indian Society of Remote Sensing, 1998, 26 (4) : 149 - 160
  • [26] Mapping soil organic carbon in Tuscany through the statistical combination of ground observations with ancillary and remote sensing data
    Gardin, Lorenzo
    Chiesi, Marta
    Fibbi, Luca
    Maselli, Fabio
    [J]. GEODERMA, 2021, 404 (404)
  • [27] Soil Type Classification and Mapping using Hyperspectral Remote Sensing Data
    Vibhute, Amol D.
    Kale, K. V.
    Dhumal, Rajesh K.
    Mehrotra, S. C.
    [J]. PROCEEDINGS 2015 INTERNATIONAL CONFERENCE ON MAN AND MACHINE INTERFACING (MAMI), 2015,
  • [28] Mapping Brazilian soil mineralogy using proximal and remote sensing data
    Rosin, Nicolas Augusto
    Dematte, Jose A. M.
    Poppiel, Raul Roberto
    Silvero, Nelida E. Q.
    Rodriguez-Albarracin, Heidy S.
    Rosas, Jorge Tadeu Fim
    Greschuk, Lucas Tadeu
    Bellinaso, Henrique
    Minasny, Budiman
    Gomez, Cecile
    Marques Junior, Jose
    Fernandes, Kathleen
    [J]. GEODERMA, 2023, 432
  • [29] Predictive soil mapping in the Boreal Plains of Northern Alberta by using multi-temporal remote sensing data and terrain derivatives
    Sorenson, Preston T.
    Kiss, Jeremy
    Serdetchnaia, Anna
    Iqbal, Javed
    Bedard-Haughn, Angela K.
    [J]. CANADIAN JOURNAL OF SOIL SCIENCE, 2022,
  • [30] DYNAMICAL PREDICTION TECHNIQUE FOR GEOSIMULATION USING MULTISPECTRAL REMOTE SENSING DATA
    Villalon-Turrubiates, I. E.
    [J]. ISPRS TC IV MID-TERM SYMPOSIUM 3D SPATIAL INFORMATION SCIENCE - THE ENGINE OF CHANGE, 2018, 4-4 : 213 - 219