Mapping and prediction of soil organic carbon by an advanced geostatistical technique using remote sensing and terrain data

被引:20
|
作者
Mallik, Santanu [1 ]
Bhowmik, Tridip [1 ]
Mishra, Umesh [1 ]
Paul, Niladri [2 ]
机构
[1] Natl Inst Technol Agartala, Dept Civil Engn, Jirania, Tripura, India
[2] Coll Agr, Dept Soil Sci & Agr Chem, Tripura Lembucherra, Tripura, India
关键词
Soil organic carbon; digital soil mapping; artificial neural network; geostatistical method; remote sensing; empirical Bayesian kriging regression; SPATIAL VARIABILITY; SEMIARID RANGELANDS; NEURAL-NETWORK; MATTER CONTENT; REGRESSION; VARIABLES; TEXTURE; INDEXES; MODELS; REGION;
D O I
10.1080/10106049.2020.1815864
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Prediction and accurate digital soil mapping (DSM) of soil organic carbon (SOC) at a local scale is a key factor for any agro-ecological modelling. This study aims to use remote sensing and terrain derivatives to provide a reliable method for SOC prediction. An advanced geostatistical-based empirical Bayesian Kriging regression (EBKR) method was used and performance was compared with the artificial neural network (ANN) and hybrid ANN, i.e. ANN-OK (ordinary kriging) and ANN-CK (cokriging). The result showed that the hybrid ANN model performs better than ANN, whereas the EBKR method outperforms all other methods with the highestR(2)of 0.936. The DSM map shows that the highest SOC concentration was found in easternmost part of the study area with grass and agricultural land. This work shows the robustness of the EBKR prediction method over other techniques. The study will also aid the policymakers in adopting sustainable land use management.
引用
收藏
页码:2198 / 2214
页数:17
相关论文
共 50 条
  • [1] Technique of large-scale soil mapping in basaltic terrain using satellite remote sensing data
    Srivastava, R
    Saxena, RK
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2004, 25 (04) : 679 - 688
  • [2] Digital mapping of soil organic carbon using remote sensing data: A systematic review
    Pouladi, Nastaran
    Gholizadeh, Asa
    Khosravi, Vahid
    Boruvka, Lubos
    [J]. CATENA, 2023, 232
  • [3] Soil Organic Carbon Mapping Using Multispectral Remote Sensing Data: Prediction Ability of Data with Different Spatial and Spectral Resolutions
    Zizala, Daniel
    Minarik, Robert
    Zadorova, Tereza
    [J]. REMOTE SENSING, 2019, 11 (24)
  • [4] Using geostatistical and remote sensing approaches for mapping soil properties
    López-Granados, F
    Jurado-Expósito, M
    Peña-Barragán, JM
    García-Torres, L
    [J]. EUROPEAN JOURNAL OF AGRONOMY, 2005, 23 (03) : 279 - 289
  • [5] Spatial prediction of surface soil properties using terrain and remote sensing data
    Yasrebi, Jafar
    Saffari, Mahboub
    Fathi, Hamed
    Emadi, Mostafa
    Baghernejad, Majid
    Ronaghi, Abdol-Majid
    Emadi, Mehdi
    [J]. Journal of Applied Sciences, 2008, 8 (06) : 1000 - 1006
  • [6] Remote Sensing for Soil Organic Carbon Mapping and Monitoring
    van Wesemael, Bas
    Chabrillat, Sabine
    Dias, Adrian Sanz
    Berger, Michael
    Szantoi, Zoltan
    [J]. REMOTE SENSING, 2023, 15 (14)
  • [7] Open Remote Sensing Data in Digital Soil Organic Carbon Mapping: A Review
    Radocaj, Dorijan
    Gasparovic, Mateo
    Jurisic, Mladen
    [J]. AGRICULTURE-BASEL, 2024, 14 (07):
  • [8] Geospatial Mapping of Soil Organic Carbon Using Regression Kriging and Remote Sensing
    Kumar, Navneet
    Velmurugan, Ayyamperumal
    Hamm, Nicholas A. S.
    Dadhwal, Vinay Kumar
    [J]. JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2018, 46 (05) : 705 - 716
  • [9] Mapping soil organic carbon under erosion processes using remote sensing
    Suleymanov, Azamat
    Gabbasova, Ilyusya
    Suleymanov, Ruslan
    Abakumov, Evgeny
    Polyakov, Vyacheslav
    Liebelt, Peter
    [J]. HUNGARIAN GEOGRAPHICAL BULLETIN, 2021, 70 (01) : 49 - 64
  • [10] Geospatial Mapping of Soil Organic Carbon Using Regression Kriging and Remote Sensing
    Navneet Kumar
    Ayyamperumal Velmurugan
    Nicholas A. S. Hamm
    Vinay Kumar Dadhwal
    [J]. Journal of the Indian Society of Remote Sensing, 2018, 46 : 705 - 716