The supercover of an m-flat is a discrete analytical object

被引:11
|
作者
Andres, Eric [1 ]
机构
[1] Univ Poitiers, XLIM SIC, CNRS 6172, F-86960 Futuroscope, France
关键词
Discrete geometry; Computer graphics; Supercover; m-flat; Discrete analytical object; Arbitrary dimension;
D O I
10.1016/j.tcs.2008.07.025
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The aim of this paper is to show that the supercover of an m-flat (i.e. a Euclidean affine subspace of dimension m) in Euclidean n-space is a discrete analytical object. The supercover of a Euclidean object F is a discrete object consisting of all the voxels that intersect F. A discrete analytical object is a set of discrete points that is defined by a finite set of inequalities. A method to determine the inequalities defining the supercover of an m-flat is provided. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:8 / 14
页数:7
相关论文
共 50 条
  • [41] Discrete Object Generation with Reversible Inductive Construction
    Seff, Ari
    Zhou, Wenda
    Damani, Farhan
    Doyle, Abigail
    Adams, Ryan P.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [42] Generalized discrete object tracking algorithms and implementations
    Chen, L
    VISION GEOMETRY VI, 1997, 3168 : 184 - 195
  • [43] Refined triangular discrete Mindlin flat shell elements
    Zengjie, G
    Wanji, C
    COMPUTATIONAL MECHANICS, 2003, 33 (01) : 52 - 60
  • [44] MODULI OF FLAT CONFORMAL STRUCTURES AND DISCRETE GROUP COHOMOLOGY
    LAFONTAINE, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 297 (13): : 655 - 658
  • [45] OBJECT-ORIENTED OPTIMIZATION OF DISCRETE STRUCTURES
    MIKI, M
    AIAA JOURNAL, 1995, 33 (10) : 1940 - 1945
  • [46] DISCRETE EVENT SIMULATION OF OBJECT MOVEMENT AND INTERACTIONS
    COREY, PD
    CLYMER, JR
    SIMULATION, 1991, 56 (03) : 167 - 174
  • [47] Refined triangular discrete Mindlin flat shell elements
    G. Zengjie
    C. Wanji
    Computational Mechanics, 2003, 33 : 52 - 60
  • [48] Discrete flat-band solitons in the kagome lattice
    Vicencio, Rodrigo A.
    Johansson, Magnus
    PHYSICAL REVIEW A, 2013, 87 (06):
  • [49] Compact discrete breathers on flat-band networks
    Danieli, C.
    Maluckov, A.
    Flach, S.
    LOW TEMPERATURE PHYSICS, 2018, 44 (07) : 678 - 687
  • [50] MINIMAX CONTROL OF A DISCRETE OBJECT WITH MIXED PERTURBATIONS
    BARABANOV, AE
    IVANOVA, AV
    AUTOMATION AND REMOTE CONTROL, 1991, 52 (04) : 521 - 530