Toward Homosuccinate Fermentation: Metabolic Engineering of Corynebacterium glutamicum for Anaerobic Production of Succinate from Glucose and Formate

被引:172
|
作者
Litsanov, Boris [1 ]
Brocker, Melanie [1 ]
Bott, Michael [1 ]
机构
[1] Forschungszentrum Julich, Inst Bio & Geowissensch, IBG Biotechnol 1, D-52425 Julich, Germany
关键词
RECOMBINANT ESCHERICHIA-COLI; ACID-PRODUCING BACTERIUM; MOLECULAR ANALYSIS; MANNHEIMIA-SUCCINICIPRODUCENS; PYRUVATE PRODUCTION; RESPIRATORY-CHAIN; GENOME SEQUENCE; GENE-EXPRESSION; ORGANIC-ACIDS; FED-BATCH;
D O I
10.1128/AEM.07790-11
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Previous studies have demonstrated the capability of Corynebacterium glutamicum for anaerobic succinate production from glucose under nongrowing conditions. In this work, we have addressed two shortfalls of this process, the formation of significant amounts of by-products and the limitation of the yield by the redox balance. To eliminate acetate formation, a derivative of the type strain ATCC 13032 (strain BOL-1), which lacked all known pathways for acetate and lactate synthesis (Delta cat Delta pqo Delta pta-ackA Delta ldhA), was constructed. Chromosomal integration of the pyruvate carboxylase gene pyc(P458S) into BOL-1 resulted in strain BOL-2, which catalyzed fast succinate production from glucose with a yield of 1 mol/mol and showed only little acetate formation. In order to provide additional reducing equivalents derived from the cosubstrate formate, the fdh gene from Mycobacterium vaccae, coding for an NAD(+)-coupled formate dehydrogenase (FDH), was chromosomally integrated into BOL-2, leading to strain BOL-3. In an anaerobic batch process with strain BOL-3, a 20% higher succinate yield from glucose was obtained in the presence of formate. A temporary metabolic blockage of strain BOL-3 was prevented by plasmid-borne overexpression of the glyceraldehyde 3-phosphate dehydrogenase gene gapA. In an anaerobic fed-batch process with glucose and formate, strain BOL-3/pAN6-gap accumulated 1,134 mM succinate in 53 h with an average succinate production rate of 1.59 mmol per g cells (dry weight) (cdw) per h. The succinate yield of 1.67 mol/mol glucose is one of the highest currently described for anaerobic succinate producers and was accompanied by a very low level of by-products (0.10 mol/mol glucose).
引用
收藏
页码:3325 / 3337
页数:13
相关论文
共 50 条
  • [21] Metabolic engineering of Corynebacterium glutamicum for fatty alcohol production from glucose and wheat straw hydrolysate
    Felix Werner
    Lynn S. Schwardmann
    Daniel Siebert
    Christian Rückert-Reed
    Jörn Kalinowski
    Marie-Theres Wirth
    Katharina Hofer
    Ralf Takors
    Volker F. Wendisch
    Bastian Blombach
    Biotechnology for Biofuels and Bioproducts, 16
  • [22] Enhancing β-alanine production from glucose in genetically modified Corynebacterium glutamicum by metabolic pathway engineering
    Wang, Jin-Yu
    Rao, Zhi-Ming
    Xu, Jian-Zhong
    Zhang, Wei-Guo
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2021, 105 (24) : 9153 - 9166
  • [23] Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum
    Jojima, Toru
    Noburyu, Ryoji
    Sasaki, Miho
    Tajima, Takahisa
    Suda, Masako
    Yukawa, Hideaki
    Inui, Masayuki
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (03) : 1165 - 1172
  • [24] Metabolic engineering of Corynebacterium glutamicum for production of sunscreen shinorine
    Tsuge, Yota
    Kawaguchi, Hideo
    Yamamoto, Shogo
    Nishigami, Yoshiko
    Sota, Masahiro
    Ogino, Chiaki
    Kondo, Akihiko
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2018, 82 (07) : 1252 - 1259
  • [25] Modification of Corynebacterium glutamicum by Metabolic Engineering for Pyruvate Production
    Fang Z.
    Cao W.
    Liu J.
    Zhang S.
    Xiao Z.
    Shan Y.
    Journal of Food Science and Technology (China), 2023, 41 (03): : 139 - 147
  • [26] Stepwise metabolic engineering of Corynebacterium glutamicum for the production of phenylalanine
    Kataoka, Naoya
    Matsutani, Minenosuke
    Matsushita, Kazunobu
    Yakushi, Toshiharu
    JOURNAL OF GENERAL AND APPLIED MICROBIOLOGY, 2023, 69 (01): : 11 - 23
  • [27] Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum
    Toru Jojima
    Ryoji Noburyu
    Miho Sasaki
    Takahisa Tajima
    Masako Suda
    Hideaki Yukawa
    Masayuki Inui
    Applied Microbiology and Biotechnology, 2015, 99 : 1165 - 1172
  • [28] Metabolic Engineering of Corynebacterium glutamicum for the Production of Flavonoids and Stilbenoids
    Chu, Luan Luong
    Tran, Chau T. Bang
    Pham, Duyen T. Kieu
    Nguyen, Hoa T. An
    Nguyen, Mi Ha
    Pham, Nhung Mai
    Nguyen, Anh T. Van
    Phan, Dung T.
    Do, Ha Minh
    Nguyen, Quang Huy
    MOLECULES, 2024, 29 (10):
  • [29] Improved succinate production in Corynebacterium glutamicum by engineering glyoxylate pathway and succinate export system
    Nianqing Zhu
    Huihua Xia
    Jiangang Yang
    Xueming Zhao
    Tao Chen
    Biotechnology Letters, 2014, 36 : 553 - 560
  • [30] Engineering of Corynebacterium glutamicum for growth and succinate production from levoglucosan, a pyrolytic sugar substrate
    Kim, Eun-Mi
    Um, Youngsoon
    Bott, Michael
    Woo, Han Min
    FEMS MICROBIOLOGY LETTERS, 2015, 362 (19)