On the location of critical point for the Poisson equation in plane

被引:1
|
作者
Kim, Sun-Chul [1 ]
机构
[1] Chung Ang Univ, Dept Math, Seoul 156756, South Korea
关键词
critical point; location; vortex; level curve; stagnation point; UNIQUENESS; FLOWS;
D O I
10.1016/j.jmaa.2005.07.070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The location of the unique critical point of Delta u = -1 is investigated by conformal mapping method in complex variables. It is found that if the domain is given by r = 1 + cp (0), the critical point coincides with the center of mass up to the order of E. However, the two do not exactly match in general as shown by simple examples. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:213 / 222
页数:10
相关论文
共 50 条
  • [31] Groundstates of the Schrodinger-Poisson-Slater equation with critical growth
    Lei, Chunyu
    Radulescu, Vicentiu D.
    Zhang, Binlin
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (03)
  • [32] Groundstates of the Schrödinger–Poisson–Slater equation with critical growth
    Chunyu Lei
    Vicenţiu D. Rădulescu
    Binlin Zhang
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [33] EQUATION OF STATE FROM TRIPLE POINT TO CRITICAL-POINT
    RATHJEN, W
    STAUFFER, D
    KIANG, CS
    PHYSICS LETTERS A, 1972, A 40 (04) : 345 - &
  • [34] FERROMAGNETIC EQUATION OF STATE NEAR CRITICAL POINT
    POPOVICI, M
    REVUE ROUMAINE DE PHYSIQUE, 1971, 16 (05): : 565 - &
  • [35] A Quasiparticle Equation of State with a Phenomenological Critical Point
    Ma, Hong-Hao
    Qian, Wei-Liang
    BRAZILIAN JOURNAL OF PHYSICS, 2018, 48 (02) : 160 - 167
  • [36] Variances of the critical point of a quadratic regression equation
    Ferreira Nunes, Ceile Cristina
    de Morais, Augusto Ramalho
    Muniz, Joel Augusto
    Safadi, Thelma
    CIENCIA E AGROTECNOLOGIA, 2004, 28 (02): : 389 - 396
  • [37] Critical Point Equation on Almost Kenmotsu Manifolds
    U. C. De
    K. Mandal
    Ukrainian Mathematical Journal, 2020, 72 : 69 - 77
  • [38] STABLE MINIMAL HYPERSURFACES IN A CRITICAL POINT EQUATION
    Hwang, Seungsu
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 20 (04): : 775 - 779
  • [39] A Quasiparticle Equation of State with a Phenomenological Critical Point
    Hong-Hao Ma
    Wei-Liang Qian
    Brazilian Journal of Physics, 2018, 48 : 160 - 167
  • [40] Critical Point Equation on Almost Kenmotsu Manifolds
    De, U. C.
    Mandal, K.
    UKRAINIAN MATHEMATICAL JOURNAL, 2020, 72 (01) : 69 - 77