AAV-mediated gene transfer for hemophilia

被引:33
|
作者
High, KA [1 ]
机构
[1] Univ Penn, Childrens Hosp Philadelphia, Sch Med, Dept Pediat, Philadelphia, PA 19104 USA
关键词
AAV; gene transfer; hemophilia B; factor IX;
D O I
10.1111/j.1749-6632.2001.tb11361.x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Hemophilia is a particularly attractive model for developing a gene transfer approach for the treatment of disease. The protein is very well characterized, the genes are cloned and available, and there are large and small animal models of the disease. Moreover, in contrast to many diseases, there is no requirement for a specific target tissue for gene delivery, and the gene product itself does not require precise regulation of expression. Earlier efforts to establish a gene transfer approach to the treatment of hemophilia had failed to achieve the twin goals of long-term expression at levels that were adequate to result in phenotypic improvement of the disease. We have exploited advances in vector development that occurred in the mid-1990s to establish an experimental basis for an AAV (adeno-associated viral vector)-mediated gene transfer approach to the treatment of hemophilia B. Based on the observation that introduction of an AAV vector into skeletal muscle could result in sustained expression of beta-galactosidase, we engineered an AAV vector expressing human factor IX and demonstrated in immunodeficient mice that intramuscular injection of the vector resulted in long-term expression of the secreted transgene product factor IX. Subsequently, we generated an AAV vector expressing canine factor IX; intramuscular injection into dogs with severe hemophilia B resulted in a dose-dependent increase in circulating levels of factor IX. The animal treated at the highest dose showed prolonged expression (>3 years and still under observation) at a level (70 ng/ml, 1.4% of normal circulating levels of factor IX) likely to result in phenotypic improvement in humans. Detailed studies in tissue culture using human myotubes have shown that muscle cells are capable of executing the posttranslational modifications required for activity of factor IX, and that the specific activity of myotube-synthesized factor IX is similar to that of hepatocyte-synthesized material, although some details of posttranslational processing differ. Based on these and other safety and efficacy studies, a clinical trial of AAV-mediated, muscle-directed gene transfer for hemophilia B has been initiated. The study has a dose-escalation design, with three subjects to be enrolled in three dose cohorts beginning with a dose of 2 x 10(11) vg/kg. Results in the initial dose cohort showed no evidence of toxicity associated with vector administration or transgene expression. Analysis of muscle biopsies done on injected tissue showed clear evidence of gene transfer by PCR and Southern blot and of gene expression by immunocytochemistry. The general characteristics of muscle transduction appear similar in humans and in other animal models. The goal of dose escalation is to find a dose that is nontoxic but that results in circulating levels of factor IX >1% in all patients.
引用
收藏
页码:64 / 74
页数:11
相关论文
共 50 条
  • [31] AAV-Mediated Gene Therapy for Atherosclerosis
    Lehrke, Michael
    Lebherz, Corinna
    CURRENT ATHEROSCLEROSIS REPORTS, 2014, 16 (09)
  • [32] AAV-mediated gene therapy for fALS
    Cappella, M.
    Cohen-Tannoudji, M.
    Marais, T.
    Astord, S.
    Besse, A.
    Giroux, B.
    Barkats, M.
    Biferi, M. G.
    HUMAN GENE THERAPY, 2018, 29 (12) : A109 - A109
  • [33] AAV-mediated gene therapy for sialidosis
    van de Vlekkert, Diantha
    Hu, Huimin
    Weesner, Jason A.
    Fremuth, Leigh E.
    Brown, Scott A.
    Lu, Meifen
    Gomero, Elida
    Campos, Yvan
    Sheppard, Heather
    d'Azzo, Alessandra
    MOLECULAR THERAPY, 2024, 32 (07) : 2094 - 2112
  • [34] AAV-Mediated Gene Targeting In Utero
    Wang, Pei-Rong
    Allen, James M.
    Olson, Erik M.
    Li, Yi
    Russell, David W.
    MOLECULAR THERAPY, 2009, 17 : S318 - S318
  • [35] Validation of AAV-mediated gene targeting
    David W. Russell
    Roli K. Hirata
    Naoki Inoue
    Nature Biotechnology, 2002, 20 : 658 - 658
  • [36] A phase I/II clinical trial for liver directed AAV-mediated gene transfer for severe hemophilia B.
    Kay, MA
    High, K
    Glader, B
    Manno, CS
    Hutchinson, S
    Dake, M
    Razavi, M
    Kaye, R
    Arruda, VR
    Herzog, R
    McClelland, A
    Rustagi, P
    Johnson, F
    Rasko, JEJ
    Hoots, K
    Blatt, P
    Leonard, DGB
    Addya, K
    Konkle, B
    Chew, A
    Couto, L
    BLOOD, 2002, 100 (11) : 115A - 115A
  • [37] MODELING AND SIMULATION OF ERYTHROPOIETIN EXPRESSION FOLLOWING AAV-MEDIATED GENE TRANSFER
    Williams, Jason H.
    Chee, Ng
    Greig, Jenny
    Wilson, James M.
    Barrett, Jeffrey S.
    JOURNAL OF CLINICAL PHARMACOLOGY, 2010, 50 (09): : 1090 - 1090
  • [38] Evidence of multiyear factor IX expression by AAV-mediated gene transfer to skeletal muscle in an individual with severe hemophilia B
    Jiang, Haiyan
    Pierce, Glenn F.
    Ozelo, Margareth C.
    de Paula, Erich V.
    Vargas, Joseph A.
    Smith, Peter
    Summer, Juerg
    Luk, Alvin
    Manno, Catherine S.
    High, Katherine A.
    Arruda, Valder R.
    MOLECULAR THERAPY, 2006, 14 (03) : 452 - 455
  • [39] Long-term phenotypic correction of hemophilia B in a large animal model by AAV-mediated gene transfer.
    Herzog, RW
    Hagstrom, JN
    Yang, EY
    Elwell, D
    Fields, PA
    Burton, M
    Bellinger, DA
    Read, MS
    Brinkhous, KM
    Podsakoff, GM
    Nichols, TC
    Couto, LB
    High, KA
    BLOOD, 1998, 92 (10) : 153A - 153A
  • [40] Advancements in AAV-mediated retinal gene transfer for inherited retinal diseases
    Auricchio, Alberto
    HUMAN GENE THERAPY, 2009, 20 (11) : 1368 - 1368