Metabolomic Insights into Human Arboviral Infections: Dengue, Chikungunya, and Zika Viruses

被引:30
|
作者
Byers, Nathaniel M. [1 ]
Fleshman, Amy C. [1 ]
Perera, Rushika [2 ]
Molins, Claudia R. [1 ]
机构
[1] Ctr Dis Control & Prevent, Div Vector Borne Dis, Ft Collins, CO 80521 USA
[2] Colorado State Univ, Dept Microbiol Immunol & Pathol, Arthropod Borne & Infect Dis Lab, Ft Collins, CO 80523 USA
来源
VIRUSES-BASEL | 2019年 / 11卷 / 03期
关键词
arbovirus; metabolomics; metabolism; alphavirus; flavivirus; lipid; CHROMATOGRAPHY-MASS SPECTROMETRY; SAMPLE PREPARATION; FATTY-ACIDS; NORMALIZATION METHODS; GAS-CHROMATOGRAPHY; ARACHIDONIC-ACID; INBORN-ERRORS; HUMAN-BLOOD; LARGE-SCALE; FEVER;
D O I
10.3390/v11030225
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The global burden of arboviral diseases and the limited success in controlling them calls for innovative methods to understand arbovirus infections. Metabolomics has been applied to detect alterations in host physiology during infection. This approach relies on mass spectrometry or nuclear magnetic resonance spectroscopy to evaluate how perturbations in biological systems alter metabolic pathways, allowing for differentiation of closely related conditions. Because viruses heavily depend on host resources and pathways, they present unique challenges for characterizing metabolic changes. Here, we review the literature on metabolomics of arboviruses and focus on the interpretation of identified molecular features. Metabolomics has revealed biomarkers that differentiate disease states and outcomes, and has shown similarities in metabolic alterations caused by different viruses (e.g., lipid metabolism). Researchers investigating such metabolomic alterations aim to better understand host-virus dynamics, identify diagnostically useful molecular features, discern perturbed pathways for therapeutics, and guide further biochemical research. This review focuses on lessons derived from metabolomics studies on samples from arbovirus-infected humans.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] CO-CIRCULATION OF ZIKA, CHIKUNGUNYA AND DENGUE VIRUSES DURING DENGUE OUTBREAK IN SUMATRA, INDONESIA
    Sasmono, R. Tedjo
    Perkasa, Aditya
    Yudhaputri, Frilasita
    Haryanto, Sotianingsih
    Yohan, Benediktus
    Ma'roef, Chairin N.
    Antonjaya, Ungke
    Hayati, Rahma F.
    Ledderman, Jeremy P.
    Rosenberg, Ronald
    Myint, Khin S.
    Powers, Ann M.
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2017, 95 (05): : 41 - 41
  • [22] Granzyme A in Chikungunya and Other Arboviral Infections
    Schanoski, Alessandra S.
    Le, Thuy T.
    Kaiserman, Dion
    Rowe, Caitlin
    Prow, Natalie A.
    Barboza, Diego D.
    Santos, Cliomar A.
    Zanotto, Paolo M. A.
    Magalhaes, Kelly G.
    Aurelio, Luigi
    Muller, David
    Young, Paul
    Zhao, Peishen
    Bird, Phillip I.
    Suhrbier, Andreas
    FRONTIERS IN IMMUNOLOGY, 2020, 10
  • [23] Importation of dengue, Zika and chikungunya infections in Europe: the current situation in Greece
    Emmanouil, M.
    Evangelidou, M.
    Papa, A.
    Mentis, A.
    NEW MICROBES AND NEW INFECTIONS, 2020, 35
  • [24] Review of dengue, zika and chikungunya infections in nervous system in endemic areas
    Puccioni-Sohler, Marzia
    Nascimento Soares, Cristiane
    Christo, Paulo Pereira
    Almeida, Sergio Monteiro de
    ARQUIVOS DE NEURO-PSIQUIATRIA, 2023, 81 (12) : 1112 - 1124
  • [25] Current Understanding of the Role of T Cells in Chikungunya, Dengue and Zika Infections
    Mapalagamage, Maheshi
    Weiskopf, Daniela
    Sette, Alessandro
    De Silva, Aruna Dharshan
    VIRUSES-BASEL, 2022, 14 (02):
  • [26] Next Generation Sequencing Methods for Simultaneous Detection of Chikungunya, Dengue, and Zika Viruses
    Baumann, Ryan
    Zhou, Huizhi
    Henning, Amanda
    Bare, Patricia
    De Giorgi, Valeria
    TRANSFUSION, 2022, 62 : 177A - 177A
  • [27] Deep Learning Employed in the Recognition of the Vector that Spreads Dengue, Chikungunya and Zika Viruses
    Arista-Jalife, Antonio
    Sanchez, Aalejandra
    Nakano, Mariko
    Tunnermann, Henrik
    Perez-Meana, Hector
    Shouno, Hayaru
    NEW TRENDS IN INTELLIGENT SOFTWARE METHODOLOGIES, TOOLS AND TECHNIQUES (SOMET_18), 2018, 303 : 108 - 120
  • [28] Use of Nanotrap particles for the capture and enrichment of Zika, chikungunya and dengue viruses in urine
    Lin, Shih-Chao
    Carey, Brian D.
    Callahan, Victoria
    Lee, Ji-Hyun
    Bracci, Nicole
    Patnaik, Anurag
    Smith, Amy K.
    Narayanan, Aarthi
    Lepene, Benjamin
    Kehn-Hall, Kylene
    PLOS ONE, 2020, 15 (01):
  • [29] Impact of the introduction of chikungunya and zika viruses on the incidence of dengue in endemic zones of Mexico
    Fernandes-Matano, Larissa
    Monroy-Munoz, Irma Eloisa
    Pardave-Alejandre, Hector Daniel
    Uribe-Noguez, Luis Antonio
    Hernandez-Cueto, Maria de los Angeles
    Rojas-Mendoza, Teresita
    Santacruz-Tinoco, Clara Esperanza
    Grajales-Muniz, Concepcion
    Munoz-Medina, Jose Esteban
    PLOS NEGLECTED TROPICAL DISEASES, 2021, 15 (12):
  • [30] Co-circulation of dengue, chikungunya, and Zika viruses and cross-protection
    Joob, Beuy
    Wiwanitkit, Viroj
    REVISTA PANAMERICANA DE SALUD PUBLICA-PAN AMERICAN JOURNAL OF PUBLIC HEALTH, 2019, 43