Stability or instability of solitary waves to double dispersion equation with quadratic-cubic nonlinearity

被引:3
|
作者
Kolkovska, N. [1 ]
Dimova, M. [1 ]
Kutev, N. [1 ]
机构
[1] BAS, Inst Math & Informat, Acad G Bonchev Str,Blvd 8, Sofia 1113, Bulgaria
关键词
Stability; Solitary waves; Double dispersion equation; GENERALIZED BOUSSINESQ EQUATION; GLOBAL EXISTENCE; BLOW-UP; BIOMEMBRANES;
D O I
10.1016/j.matcom.2016.03.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The solitary waves to the double dispersion equation with quadratic-cubic nonlinearity are explicitly constructed. Grillakis, Shatah and Strauss' stability theory is applied for the investigation of the orbital stability or instability of solitary waves to the double dispersion equation. An analytical formula, related to some conservation laws of the problem, is derived. As a consequence, the dependence of orbital stability or instability on the parameters of the problem is demonstrated. A complete characterization of the values of the wave velocity, for which the solitary waves to the generalized Boussinesq equation are orbitally stable or unstable, is given. In the special case of a quadratic nonlinearity our results are reduced to those known in the literature. (C) 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:249 / 264
页数:16
相关论文
共 50 条
  • [1] ORBITAL STABILITY OR INSTABILITY OF SOLITARY WAVES TO GENERALIZED BOUSSINESQ EQUATION WITH QUADRATIC-CUBIC NONLINEARITY
    Dimova, Milena
    Kolkovska, Natalia
    Kutev, Nikolay
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2018, 71 (08): : 1011 - 1019
  • [2] Some remarks on the stability and instability properties of solitary waves for the double dispersion equation
    Erbay, Husnu Ata
    Erbay, Saadet
    Erkip, Albert
    PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES, 2015, 64 (03) : 262 - 269
  • [3] Orbital instability of standing waves for the Klein-Gordon-Schrodinger system with quadratic-cubic nonlinearity
    Zhu, Qing
    Zhou, Zhan
    Luo, Tingjian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 456 (02) : 1329 - 1346
  • [4] Soliton solutions of NLSE with quadratic-cubic nonlinearity and stability analysis
    Aslan, Ebru Cavlak
    Inc, Mustafa
    WAVES IN RANDOM AND COMPLEX MEDIA, 2017, 27 (04) : 594 - 601
  • [5] SPECTRAL STABILITY AND INSTABILITY OF SOLITARY WAVES OF THE DIRAC EQUATION WITH CONCENTRATED NONLINEARITY
    Boussaid, Nabile
    Cacciapuoti, Claudio
    Carlone, Raffaele
    Comech, Andrew
    Noja, Diego
    Posilicano, Andrea
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (10) : 3029 - 3067
  • [6] Solitary and periodic waves in quadratic-cubic non-centrosymmetric waveguides
    Triki, Houria
    Kruglov, Vladimir I.
    PHYSICS LETTERS A, 2022, 447
  • [7] Solitary and periodic waves in quadratic-cubic non-centrosymmetric waveguides
    Triki, Houria
    Kruglov, Vladimir I.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 447
  • [8] On traveling waves of the quadratic-cubic Degasperis-Procesi equation
    Han, Xuanxuan
    Yang, Shaojie
    MONATSHEFTE FUR MATHEMATIK, 2022, 199 (02): : 259 - 274
  • [9] On traveling waves of the quadratic-cubic Degasperis-Procesi equation
    Xuanxuan Han
    Shaojie Yang
    Monatshefte für Mathematik, 2022, 199 : 259 - 274
  • [10] A FIXED POINT APPROACH TO THE STABILITY OF A QUADRATIC-CUBIC FUNCTIONAL EQUATION
    Lee, Yang-Hi
    KOREAN JOURNAL OF MATHEMATICS, 2019, 27 (02): : 343 - 355