Hand-Object Interaction Detection with Fully Convolutional Networks

被引:8
|
作者
Schroeder, Matthias [1 ]
Ritter, Helge [1 ]
机构
[1] Bielefeld Univ, Neuroinformat Grp, Bielefeld, Germany
来源
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW) | 2017年
关键词
D O I
10.1109/CVPRW.2017.163
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Detecting hand-object interactions is a challenging problem with many applications in the human-computer interaction domain. We present a real-time method that automatically detects hand-object interactions in RGBD sensor data and tracks the object's rigid pose over time. The detection is performed using a fully convolutional neural network, which is purposefully trained to discern the relationship between hands and objects and which predicts pixel-wise class probabilities. This output is used in a probabilistic pixel labeling strategy that explicitly accounts for the uncertainty of the prediction. Based on the labeling of object pixels, the object is tracked over time using model-based registration. We evaluate the accuracy and generalizability of our approach and make our annotated RGBD dataset as well as our trained models publicly available.
引用
收藏
页码:1236 / 1243
页数:8
相关论文
共 50 条
  • [21] Hand Pose Estimation for Hand-Object Interaction Cases using Augmented Autoencoder
    Li, Shile
    Wang, Haojie
    Lee, Dongheui
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 993 - 999
  • [22] Hand-Object Interaction: From Human Demonstrations to Robot Manipulation
    Carfi, Alessandro
    Patten, Timothy
    Kuang, Yingyi
    Hammoud, Ali
    Alameh, Mohamad
    Maiettini, Elisa
    Weinberg, Abraham Itzhak
    Faria, Diego
    Mastrogiovanni, Fulvio
    Alenya, Guillem
    Natale, Lorenzo
    Perdereau, Veronique
    Vincze, Markus
    Billard, Aude
    FRONTIERS IN ROBOTICS AND AI, 2021, 8
  • [23] Learning a Contact Potential Field for Modeling the Hand-Object Interaction
    Yang, Lixin
    Zhan, Xinyu
    Li, Kailin
    Xu, Wenqiang
    Zhang, Junming
    Li, Jiefeng
    Lu, Cewu
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (08) : 5645 - 5662
  • [24] PEAR: phrase-based hand-object interaction anticipation
    Zichen ZHANG
    Hongchen LUO
    Wei ZHAI
    Yang CAO
    Yu KANG
    Science China(Information Sciences), 2025, 68 (05) : 133 - 152
  • [25] Fully Convolutional Neural Networks for Dynamic Object Detection in Grid Maps
    Piewak, Florian
    Rehfeld, Timo
    Weber, Michael
    Zoellner, J. Marius
    2017 28TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV 2017), 2017, : 392 - 398
  • [26] Diffusion-Guided Reconstruction of Everyday Hand-Object Interaction Clips
    Ye, Yufei
    Hebbar, Poorvi
    Gupta, Abhinav
    Tulsiani, Shubham
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 19660 - 19671
  • [27] Physically Plausible Full-Body Hand-Object Interaction Synthesis
    Braun, Jona
    Christen, Sammy
    Kocabas, Muhammed
    Aksan, Emre
    Hilliges, Otmar
    2024 INTERNATIONAL CONFERENCE IN 3D VISION, 3DV 2024, 2024, : 464 - 473
  • [28] Multi-Level Fusion Net for hand pose estimation in hand-object interaction
    Lin, Xiang-Bo
    Zhou, Yi-Dan
    Du, Kuo
    Sun, Yi
    Ma, Xiao-Hong
    Lu, Jian
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 94 (94)
  • [29] Posterior Parietal Cortex Encoding of Dynamic Hand Force Underlying Hand-Object Interaction
    Ferrari-Toniolo, Simone
    Visco-Comandini, Federica
    Papazachariadis, Odysseas
    Caminiti, Roberto
    Battaglia-Mayer, Alexandra
    JOURNAL OF NEUROSCIENCE, 2015, 35 (31): : 10899 - 10910
  • [30] Predicting Hand-Object Interaction for Improved Haptic Feedback in Mixed Reality
    Salvato, M.
    Heravi, Negin
    Okamura, Allison M.
    Bohg, Jeannette
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 3851 - 3857