Building RDF ontologies from semi-structured legal documents

被引:18
|
作者
Amato, Flora [1 ]
Mazzeo, Antonino [1 ]
Penta, Antonio [1 ]
Picariello, Antonio [1 ]
机构
[1] Univ Naples Federico 2, Dipartimento Informat & Sistemist, I-80125 Naples, Italy
关键词
D O I
10.1109/CISIS.2008.146
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The increasing interest in the context of e-government requires intelligent techniques for legal information and knowledge, management. In this paper we describe a system that, given a number of legal paper documents, automatically transforms them into suitable RDF statements, using several ontological and linguistic knowledge levels. Although we describe a general methodology for a number of application domains, our system is particularly suitable for the notary realm.
引用
收藏
页码:997 / 1002
页数:6
相关论文
共 50 条
  • [21] Header metadata extraction from semi-structured documents using template matching
    Huang, Zewu
    Jin, Hai
    Yuan, Pingpeng
    Han, Zongfen
    ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS 2006: OTM 2006 WORKSHOPS, PT 2, PROCEEDINGS, 2006, 4278 : 1776 - +
  • [22] Mining Entities and their Values from Semi-Structured Documents in Business Process Outsourcing
    Guggilla, Chinnappa
    Pandey, Ankit G.
    Kummamuru, Krishna
    Shivaram, Madhura
    PROCEEDINGS OF THE ACM INDIA JOINT INTERNATIONAL CONFERENCE ON DATA SCIENCE AND MANAGEMENT OF DATA (CODS-COMAD'18), 2018, : 283 - 288
  • [23] An Automatic Ontology Population with a Machine Learning Technique from Semi-Structured Documents
    Song, Hyun-Je
    Park, Seong-Bae
    Park, Se-Young
    ICIA: 2009 INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, VOLS 1-3, 2009, : 519 - 524
  • [24] WebDP: Understanding Discourse Structures in Semi-Structured Web Documents
    Liu, Peilin
    Lin, Hongyu
    Liao, Meng
    Xiang, Hao
    Han, Xianpei
    Sun, Le
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023), 2023, : 10235 - 10258
  • [25] OLERA: OnLine extraction rule analysis for semi-structured documents
    Chang, CH
    Kuo, SC
    PROCEEDINGS OF THE IASTED INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND APPLICATIONS, VOLS 1AND 2, 2004, : 736 - 742
  • [26] Supplementing domain knowledge to BERT with semi-structured information of documents
    Chen, Jing
    Wei, Zhihua
    Wang, Jiaqi
    Wang, Rui
    Gong, Chuanyang
    Zhang, Hongyun
    Miao, Duoqian
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 235
  • [27] An approach to semantic information retrieval in heterogeneous semi-structured documents
    Mrabet, Yassine
    Bennacer, Nacéra
    Pernelle, Nathalie
    Thiam, Mouhamadou
    CORIA 2010: Actes de la COnference en Recherche d'Information et Applications - Proceedings of the Conference on Information Retrieval and Applications, 2010, : 195 - 210
  • [28] Joint Distributed Representation of Text and Structure of Semi-Structured Documents
    Laddha, Abhishek
    Joshi, Salil
    Shaikh, Samiulla
    Mehta, Sameep
    HT'18: PROCEEDINGS OF THE 29TH ACM CONFERENCE ON HYPERTEXT AND SOCIAL MEDIA, 2018, : 25 - 32
  • [29] Clustering method via independent components for semi-structured documents
    Wang, Tong
    Liu, Da-Xin
    Lin, Xuanzuo
    Sun, Wei
    DATA MINING, INTRUSION DETECTION, INFORMATION ASSURANCE, AND DATA NETWORKS SECURITY 2006, 2006, 6241
  • [30] EGA: An algorithm for automatic semi-structured Web documents extraction
    Li, LY
    Tang, SW
    Yang, DQ
    Wang, TJ
    Su, ZH
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, 2004, 2973 : 787 - 798