Persistent homology and partial similarity of shapes

被引:13
|
作者
Di Fabio, Barbara [2 ]
Landi, Claudia [1 ,2 ]
机构
[1] Univ Modena & Reggio Emilia, DiSMI, I-42122 Reggio Emilia, Italy
[2] Univ Bologna, ARCES, I-40125 Bologna, Italy
关键词
Mayer-Vietoris formula; Extended persistence; Hausdorff distance;
D O I
10.1016/j.patrec.2011.11.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Persistent homology provides shapes descriptors called persistence diagrams. We use persistence diagrams to address the problem of shape comparison based on partial similarity. We show that two shapes having a common sub-part in general present a common persistence sub-diagram. Hence, the partial Hausdorff distance between persistence diagrams measures partial similarity between shapes. The approach is supported by experiments on 2D and 3D data sets. (c) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1445 / 1450
页数:6
相关论文
共 50 条
  • [41] Persistent Homology of Semialgebraic Sets
    Basu, Saugata
    Karisani, Negin
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2023, 7 (03) : 651 - 684
  • [42] Persistent Homology of Collaboration Networks
    Carstens, C. J.
    Horadam, K. J.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [43] Persistent Homology and Machine Learning
    Skraba, Primoz
    INFORMATICA-JOURNAL OF COMPUTING AND INFORMATICS, 2018, 42 (02): : 253 - 258
  • [44] Persistent homology detects curvature
    Bubenik, Peter
    Hull, Michael
    Patel, Dhruv
    Whittle, Benjamin
    INVERSE PROBLEMS, 2020, 36 (02)
  • [45] Stratifying Multiparameter Persistent Homology
    Harrington, Heather A.
    Otter, Nina
    Schenck, Hal
    Tillmann, Ulrike
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2019, 3 (03): : 439 - 471
  • [46] A statistical approach to persistent homology
    Bubenik, Peter
    Kim, Peter T.
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2007, 9 (02) : 337 - 362
  • [47] Nori Diagrams and Persistent Homology
    Yuri I. Manin
    Matilde Marcolli
    Mathematics in Computer Science, 2020, 14 : 77 - 102
  • [48] A Bayesian Framework for Persistent Homology
    Maroulas, Vasileios
    Nasrin, Farzana
    Oballe, Christopher
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2020, 2 (01): : 48 - 74
  • [49] Persistent homology and string vacua
    Michele Cirafici
    Journal of High Energy Physics, 2016
  • [50] Persistent homology of quantum entanglement
    Olsthoorn, Bart
    PHYSICAL REVIEW B, 2023, 107 (11)