The factoring likelihood method for non-monotone missing data

被引:1
|
作者
Kim, Jae Kwang [2 ]
Shin, Dong Wan [1 ]
机构
[1] Ewha Womans Univ, Dept Stat, Seoul 120750, South Korea
[2] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
基金
新加坡国家研究基金会;
关键词
EM algorithm; Gauss-Newton method; Generalized least squares; Maximum likelihood estimator; Missing at random; INCOMPLETE-DATA; MAXIMUM-LIKELIHOOD; REGRESSION; INFERENCE; MODELS;
D O I
10.1016/j.jkss.2011.12.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We address the problem of parameter estimation in multivariate distributions under ignorable non-monotone missing data. The factoring likelihood method for monotone missing data, termed by Rubin (1974), is applied to a more general case of non-monotone missing data. The proposed method is asymptotically equivalent to the Fisher scoring method from the observed likelihood, but avoids the burden of computing the first and second partial derivatives of the observed likelihood. Instead, the maximum likelihood estimates and their information matrices for each partition of the data set are computed separately and combined naturally using the generalized least squares method. A numerical example is presented to illustrate the method. (c) 2012 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:375 / 386
页数:12
相关论文
共 50 条
  • [21] Monotone simulations of non-monotone proofs
    Atserias, A
    Galesi, N
    Pudlák, P
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2002, 65 (04) : 626 - 638
  • [22] Semiparametric approach for non-monotone missing covariates in a parametric regression model
    Sinha, Samiran
    Saha, Krishna K.
    Wang, Suojin
    [J]. BIOMETRICS, 2014, 70 (02) : 299 - 311
  • [23] A copula model for repeated measurements with non-ignorable non-monotone missing outcome
    Shen, Changyu
    Weissfeld, Lisa
    [J]. STATISTICS IN MEDICINE, 2006, 25 (14) : 2427 - 2440
  • [24] Non-monotone inexact restoration method for nonlinear programming
    Juliano B. Francisco
    Douglas S. Gonçalves
    Fermín S. V. Bazán
    Lila L. T. Paredes
    [J]. Computational Optimization and Applications, 2020, 76 : 867 - 888
  • [25] Non-monotone inexact restoration method for nonlinear programming
    Francisco, Juliano B.
    Goncalves, Douglas S.
    Bazan, Fermin S. V.
    Paredes, Lila L. T.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 76 (03) : 867 - 888
  • [26] Using Multiple Imputation with GEE with Non-monotone Missing Longitudinal Binary Outcomes
    Lipsitz, Stuart R.
    Fitzmaurice, Garrett M.
    Weiss, Roger D.
    [J]. PSYCHOMETRIKA, 2020, 85 (04) : 890 - 904
  • [27] Using Multiple Imputation with GEE with Non-monotone Missing Longitudinal Binary Outcomes
    Stuart R. Lipsitz
    Garrett M. Fitzmaurice
    Roger D. Weiss
    [J]. Psychometrika, 2020, 85 : 890 - 904
  • [28] A weighted combination of pseudo-likelihood estimators for longitudinal binary data subject to non-ignorable non-monotone missingness
    Troxel, Andrea B.
    Lipsitz, Stuart R.
    Fitzmaurice, Garrett M.
    Ibrahim, Joseph G.
    Sinha, Debajyoti
    Molenberghs, Geert
    [J]. STATISTICS IN MEDICINE, 2010, 29 (14) : 1511 - 1521
  • [29] Computability and non-monotone induction
    Normann, Dag
    [J]. COMPUTABILITY-THE JOURNAL OF THE ASSOCIATION CIE, 2024, 13 (02): : 161 - 196
  • [30] The non-monotone conic algorithm
    Manoussakis, G. E.
    Botsaris, C. A.
    Grapsa, T. N.
    [J]. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2008, 29 (01): : 1 - 15