Representation of strongly truncated Riesz spaces

被引:6
|
作者
Boulabiar, Karim [1 ]
Hajji, Rawaa [1 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, Dept Math, Lab Rech LATAO,GOSAEF, El Manar 2092, Tunisia
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2020年 / 31卷 / 05期
关键词
Infinitely small; Spectrum; Truncation; Truncated Riesz space; Strong truncation; Representation; Riesz norm; Locally compact; Stone condition;
D O I
10.1016/j.indag.2020.03.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Following a recent idea by Ball, we introduce the notion of strongly truncated Riesz space with a suitable spectrum. We prove that, under an extra Archimedean type condition, any strongly truncated Riesz space is isomorphic to a uniformly dense Riesz subspace of a C-0(X)-space. This turns out to be a direct generalization of the classical Kakutani Representation Theorem on Archimedean Riesz spaces with strong unit. Another representation theorem on normed Riesz spaces, due to Fremlin, will be obtained as a consequence of our main result. (C) 2020 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:741 / 757
页数:17
相关论文
共 50 条
  • [21] On riesz spaces with b-property and strongly order bounded operators
    Alpay S.
    Altın B.
    Rendiconti del Circolo Matematico di Palermo, 2011, 60 (1-2) : 1 - 12
  • [22] Some characterizations of Riesz spaces in the sense of strongly order bounded operators
    Seyed AliReza Jalili
    Mohammad Bagher Farshbaf Moghimi
    Kazem Haghnejad Azar
    Abbas Najati
    Razi Alavizadeh
    Akbar Bahramnezhad
    Positivity, 2020, 24 : 117 - 127
  • [23] The Riesz representation theorem on infinite dimensional spaces and its applications
    Lee, YJ
    Shih, CY
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2002, 5 (01) : 41 - 59
  • [24] On characterizing Riesz spaces C(X) without Yosida representation
    M. Hušek
    A. Pulgarín
    Positivity, 2013, 17 : 515 - 524
  • [25] On characterizing Riesz spaces C(X) without Yosida representation
    Husek, M.
    Pulgarin, A.
    POSITIVITY, 2013, 17 (03) : 515 - 524
  • [26] PROOF THEORY OF RIESZ SPACES AND MODAL RIESZ SPACES
    Lucas, Christophe
    Mio, Matteo
    LOGICAL METHODS IN COMPUTER SCIENCE, 2022, 18 (01) : 32:1 - 32:64
  • [27] Weakly Compact Sets and Riesz Representation Theorem in Musielak Sequence Spaces
    Gong, Wan Zhong
    Shi, Si Yu
    Shi, Zhong Rui
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (02) : 467 - 484
  • [28] A Riesz representation theory for completely regular Hausdorff spaces and its applications
    Nowak, Marian
    OPEN MATHEMATICS, 2016, 14 : 474 - 496
  • [29] Weakly Compact Sets and Riesz Representation Theorem in Musielak Sequence Spaces
    Wan Zhong Gong
    Si Yu Shi
    Zhong Rui Shi
    Acta Mathematica Sinica, English Series, 2024, 40 : 467 - 484
  • [30] Weakly Compact Sets and Riesz Representation Theorem in Musielak Sequence Spaces
    Wan Zhong GONG
    Si Yu SHI
    Zhong Rui SHI
    ActaMathematicaSinica,EnglishSeries, 2024, (02) : 467 - 484