Representation of strongly truncated Riesz spaces

被引:6
|
作者
Boulabiar, Karim [1 ]
Hajji, Rawaa [1 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, Dept Math, Lab Rech LATAO,GOSAEF, El Manar 2092, Tunisia
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2020年 / 31卷 / 05期
关键词
Infinitely small; Spectrum; Truncation; Truncated Riesz space; Strong truncation; Representation; Riesz norm; Locally compact; Stone condition;
D O I
10.1016/j.indag.2020.03.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Following a recent idea by Ball, we introduce the notion of strongly truncated Riesz space with a suitable spectrum. We prove that, under an extra Archimedean type condition, any strongly truncated Riesz space is isomorphic to a uniformly dense Riesz subspace of a C-0(X)-space. This turns out to be a direct generalization of the classical Kakutani Representation Theorem on Archimedean Riesz spaces with strong unit. Another representation theorem on normed Riesz spaces, due to Fremlin, will be obtained as a consequence of our main result. (C) 2020 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:741 / 757
页数:17
相关论文
共 50 条