Synthesis, characterisation and thermal conductivity of CuO - water based nanofluids with different dispersants

被引:24
|
作者
Pavithra, K. S. [1 ]
Fasiulla [1 ]
Yashoda, M. P. [1 ]
Prasannakumar, S. [2 ]
机构
[1] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Chem, Udupi 576104, Karnataka, India
[2] Kanasparsa Chem Pvt Ltd, Bangalore, Karnataka, India
关键词
Chemical precipitation method; concentration ratio; CuO nanofluids; dispersants; stability; thermal conductivity; HEAT-TRANSFER; AQUEOUS SUSPENSIONS; NANOPARTICLES; STABILITY; ENHANCEMENT; TEMPERATURE; PERFORMANCE; SURFACTANT; NANOTUBES; SDBS;
D O I
10.1080/02726351.2019.1574941
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The aim of the present work is to investigate the change in thermal conductivity and stability of copper oxide (CuO) water-based nanofluids, which are prepared by a two-step process, with different concentrations of anionic (Sodium dodecyl sulfate SDS) and nonionic dispersants (Polyvinyl pyrrolidone PVP). Further, CuO nanofluids and nanoparticles have been characterized by XRD, EDX, FESEM, TEM, DLS, and UV to examine the particle size, elemental composition, morphology, particle size distribution, and band gap. Besides, thermal conductivity and stability of all the fluid samples have been measured with respect to particle volume fraction. The interpretation of particle stability in different weight percent of dispersants in base fluids in the presence of PVP dispersant results in a better stabilizing agent than SDS at higher particle volume fraction. Finally, evaluating the effect of lower dispersant concentration (0.1-0.5wt%) and particle size on the thermal conductivity of CuO water-based nanofluids confirmed that the significant enhancement of thermal conductivity is observed at lower dispersant concentration and decreases with increase in particle size. The enhancement of thermal conductivity was found to be 38% and 34% at 0.4wt% of SDS and PVP dispersants.
引用
收藏
页码:559 / 567
页数:9
相关论文
共 50 条
  • [21] Development of water-based CuO/GO/MWCNT ternary nanofluid and comparative study of thermal conductivity and viscosity with CuO, GO, MWCNTs mono nanofluids
    Girhe, N.
    Botewad, S.
    Pawar, P.
    Kadam, A.
    INDIAN JOURNAL OF PHYSICS, 2023, 97 (04) : 1137 - 1145
  • [22] Development of water-based CuO/GO/MWCNT ternary nanofluid and comparative study of thermal conductivity and viscosity with CuO, GO, MWCNTs mono nanofluids
    N. Girhe
    S. Botewad
    P. Pawar
    A. Kadam
    Indian Journal of Physics, 2023, 97 : 1137 - 1145
  • [23] Thermal conductivity enhancement for CuO nanoflakes in oil-based and oil blend-based nanofluids
    Abutaleb, Ahmed
    Imran, Mohd
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2021, 68 (08) : 1400 - 1404
  • [24] Experimental Study on Thermal Conductivity and Viscosity of Water-Based Nanofluids
    Tavman, Ismail
    Turgut, Alpaslan
    Chirtoc, Mihai
    Hadjov, Kliment
    Fudym, Olivier
    Tavman, Sebnem
    HEAT TRANSFER RESEARCH, 2010, 41 (03) : 339 - 351
  • [25] WATER BASED MULTIWALLED CARBON NANOTUBE NANOFLUIDS WITH OPTIMIZED THERMAL CONDUCTIVITY
    Chen, Li Fei
    Xie, Huaqing
    Yu, Wei
    Li, Yang
    ICNMM 2009, PTS A-B, 2009, : 917 - 920
  • [26] Stability and thermal conductivity of water-based carbon nanotube nanofluids
    Farbod, Mansoor
    Ahangarpour, Ameneh
    Etemad, Seyed Gholamreza
    PARTICUOLOGY, 2015, 22 : 59 - 65
  • [27] Enhanced thermal conductivity of TiO2 -: water based nanofluids
    Murshed, SMS
    Leong, KC
    Yang, C
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2005, 44 (04) : 367 - 373
  • [28] Phenomenological formula for thermal conductivity coefficient of water-based nanofluids
    Ceotto, D.
    Rudyak, V. Ya.
    COLLOID JOURNAL, 2016, 78 (04) : 509 - 514
  • [29] Phenomenological formula for thermal conductivity coefficient of water-based nanofluids
    D. Ceotto
    V. Ya. Rudyak
    Colloid Journal, 2016, 78 : 509 - 514
  • [30] Investigation on the thermal and electrical conductivity of water based zinc oxide nanofluids
    Li Yi-Tong
    Shen Liang-Ping
    Wang Hao
    Wang Han-Bin
    ACTA PHYSICA SINICA, 2013, 62 (12)