Synthesis, characterisation and thermal conductivity of CuO - water based nanofluids with different dispersants

被引:24
|
作者
Pavithra, K. S. [1 ]
Fasiulla [1 ]
Yashoda, M. P. [1 ]
Prasannakumar, S. [2 ]
机构
[1] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Chem, Udupi 576104, Karnataka, India
[2] Kanasparsa Chem Pvt Ltd, Bangalore, Karnataka, India
关键词
Chemical precipitation method; concentration ratio; CuO nanofluids; dispersants; stability; thermal conductivity; HEAT-TRANSFER; AQUEOUS SUSPENSIONS; NANOPARTICLES; STABILITY; ENHANCEMENT; TEMPERATURE; PERFORMANCE; SURFACTANT; NANOTUBES; SDBS;
D O I
10.1080/02726351.2019.1574941
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The aim of the present work is to investigate the change in thermal conductivity and stability of copper oxide (CuO) water-based nanofluids, which are prepared by a two-step process, with different concentrations of anionic (Sodium dodecyl sulfate SDS) and nonionic dispersants (Polyvinyl pyrrolidone PVP). Further, CuO nanofluids and nanoparticles have been characterized by XRD, EDX, FESEM, TEM, DLS, and UV to examine the particle size, elemental composition, morphology, particle size distribution, and band gap. Besides, thermal conductivity and stability of all the fluid samples have been measured with respect to particle volume fraction. The interpretation of particle stability in different weight percent of dispersants in base fluids in the presence of PVP dispersant results in a better stabilizing agent than SDS at higher particle volume fraction. Finally, evaluating the effect of lower dispersant concentration (0.1-0.5wt%) and particle size on the thermal conductivity of CuO water-based nanofluids confirmed that the significant enhancement of thermal conductivity is observed at lower dispersant concentration and decreases with increase in particle size. The enhancement of thermal conductivity was found to be 38% and 34% at 0.4wt% of SDS and PVP dispersants.
引用
收藏
页码:559 / 567
页数:9
相关论文
共 50 条
  • [1] Synthesis, characterization, thermal conductivity and sensitivity of CuO nanofluids
    Agarwal, Ravi
    Verma, Kamalesh
    Agrawal, Narendra Kumar
    Duchaniya, Rajendra Kumar
    Singh, Ramvir
    APPLIED THERMAL ENGINEERING, 2016, 102 : 1024 - 1036
  • [2] CuO Nanofluids: The Synthesis and Investigation of Stability and Thermal Conductivity
    Sahooli, M.
    Sabbaghi, S.
    JOURNAL OF NANOFLUIDS, 2012, 1 (02) : 155 - 160
  • [3] The Effective Thermal Conductivity of Water Based Nanofluids at Different Temperatures
    Srinivas, T.
    Vinod, A. Venu
    JOURNAL OF TESTING AND EVALUATION, 2016, 44 (01) : 280 - 289
  • [4] Enhancement of thermal conductivity with CuO for nanofluids
    Liu, MS
    Lin, MCC
    Huang, IT
    Wang, CC
    CHEMICAL ENGINEERING & TECHNOLOGY, 2006, 29 (01) : 72 - 77
  • [5] Influence of CuO nanoparticles in enhancing the thermal conductivity of water and monoethylene glycol based nanofluids
    Khedkar, Rohit S.
    Sonawane, Shriram S.
    Wasewar, Kailas L.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2012, 39 (05) : 665 - 669
  • [6] Influence of CuO Nanostructures on the Thermal Conductivity of DI Water and Ethylene Glycol Based Nanofluids
    Pal, Bhupender
    Pal, Bonamali
    PARTICULATE SCIENCE AND TECHNOLOGY, 2015, 33 (03) : 224 - 228
  • [7] AN INVESTIGATION ON THERMAL CONDUCTIVITY AND VISCOSITY OF WATER BASED NANOFLUIDS
    Tavman, I.
    Turgut, A.
    MICROFLUIDICS BASED MICROSYSTEMS: FUNDAMENTALS AND APPLICATIONS, 2010, : 139 - 162
  • [8] Correlations for thermal conductivity and viscosity of water based nanofluids
    Azmi, W. H.
    Sharma, K. V.
    Mamat, Rizalman
    Alias, A. B. S.
    Misnon, Izan Izwan
    1ST INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING RESEARCH 2011 (ICMER2011), 2012, 36
  • [9] Novel use of CuO nanoparticles additive for improving thermal conductivity of MgO/water and MWCNT/water nanofluids
    Prudhvi Krishna Amburi
    G Senthilkumar
    A Nithya
    Journal of Thermal Analysis and Calorimetry, 2023, 148 : 10389 - 10398
  • [10] Novel use of CuO nanoparticles additive for improving thermal conductivity of MgO/water and MWCNT/water nanofluids
    Amburi, Prudhvi Krishna
    Senthilkumar, G.
    Nithya, A.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (19) : 10389 - 10398